$$$x^{n} \left(1 - x\right)$$$$$$x$$$ 的積分

此計算器會求出 $$$x^{n} \left(1 - x\right)$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int x^{n} \left(1 - x\right)\, dx$$$

解答

此積分沒有閉式表示:

$${\color{red}{\int{x^{n} \left(1 - x\right) d x}}} = {\color{red}{\frac{x^{n + 1} {{}_{2}F_{1}\left(\begin{matrix} -1, n + 1 \\ n + 2 \end{matrix}\middle| {x} \right)}}{n + 1}}}$$

因此,

$$\int{x^{n} \left(1 - x\right) d x} = \frac{x^{n + 1} {{}_{2}F_{1}\left(\begin{matrix} -1, n + 1 \\ n + 2 \end{matrix}\middle| {x} \right)}}{n + 1}$$

化簡:

$$\int{x^{n} \left(1 - x\right) d x} = \frac{x^{n + 1} \left(n - x \left(n + 1\right) + 2\right)}{\left(n + 1\right) \left(n + 2\right)}$$

加上積分常數:

$$\int{x^{n} \left(1 - x\right) d x} = \frac{x^{n + 1} \left(n - x \left(n + 1\right) + 2\right)}{\left(n + 1\right) \left(n + 2\right)}+C$$

答案

$$$\int x^{n} \left(1 - x\right)\, dx = \frac{x^{n + 1} \left(n - x \left(n + 1\right) + 2\right)}{\left(n + 1\right) \left(n + 2\right)} + C$$$A


Please try a new game Rotatly