$$$x^{2} y^{2}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int x^{2} y^{2}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=y^{2}$$$ 與 $$$f{\left(x \right)} = x^{2}$$$:
$${\color{red}{\int{x^{2} y^{2} d x}}} = {\color{red}{y^{2} \int{x^{2} d x}}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$y^{2} {\color{red}{\int{x^{2} d x}}}=y^{2} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=y^{2} {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
因此,
$$\int{x^{2} y^{2} d x} = \frac{x^{3} y^{2}}{3}$$
加上積分常數:
$$\int{x^{2} y^{2} d x} = \frac{x^{3} y^{2}}{3}+C$$
答案
$$$\int x^{2} y^{2}\, dx = \frac{x^{3} y^{2}}{3} + C$$$A
Please try a new game Rotatly