$$$\frac{\ln\left(x\right)}{x^{3}}$$$ 的積分

此計算器將求出 $$$\frac{\ln\left(x\right)}{x^{3}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\ln\left(x\right)}{x^{3}}\, dx$$$

解答

對於積分 $$$\int{\frac{\ln{\left(x \right)}}{x^{3}} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=\frac{dx}{x^{3}}$$$

$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(步驟見 »),且 $$$\operatorname{v}=\int{\frac{1}{x^{3}} d x}=- \frac{1}{2 x^{2}}$$$(步驟見 »)。

該積分可改寫為

$${\color{red}{\int{\frac{\ln{\left(x \right)}}{x^{3}} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \left(- \frac{1}{2 x^{2}}\right)-\int{\left(- \frac{1}{2 x^{2}}\right) \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(- \int{\left(- \frac{1}{2 x^{3}}\right)d x} - \frac{\ln{\left(x \right)}}{2 x^{2}}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- \frac{1}{2}$$$$$$f{\left(x \right)} = \frac{1}{x^{3}}$$$

$$- {\color{red}{\int{\left(- \frac{1}{2 x^{3}}\right)d x}}} - \frac{\ln{\left(x \right)}}{2 x^{2}} = - {\color{red}{\left(- \frac{\int{\frac{1}{x^{3}} d x}}{2}\right)}} - \frac{\ln{\left(x \right)}}{2 x^{2}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-3$$$

$$\frac{{\color{red}{\int{\frac{1}{x^{3}} d x}}}}{2} - \frac{\ln{\left(x \right)}}{2 x^{2}}=\frac{{\color{red}{\int{x^{-3} d x}}}}{2} - \frac{\ln{\left(x \right)}}{2 x^{2}}=\frac{{\color{red}{\frac{x^{-3 + 1}}{-3 + 1}}}}{2} - \frac{\ln{\left(x \right)}}{2 x^{2}}=\frac{{\color{red}{\left(- \frac{x^{-2}}{2}\right)}}}{2} - \frac{\ln{\left(x \right)}}{2 x^{2}}=\frac{{\color{red}{\left(- \frac{1}{2 x^{2}}\right)}}}{2} - \frac{\ln{\left(x \right)}}{2 x^{2}}$$

因此,

$$\int{\frac{\ln{\left(x \right)}}{x^{3}} d x} = - \frac{\ln{\left(x \right)}}{2 x^{2}} - \frac{1}{4 x^{2}}$$

化簡:

$$\int{\frac{\ln{\left(x \right)}}{x^{3}} d x} = \frac{- 2 \ln{\left(x \right)} - 1}{4 x^{2}}$$

加上積分常數:

$$\int{\frac{\ln{\left(x \right)}}{x^{3}} d x} = \frac{- 2 \ln{\left(x \right)} - 1}{4 x^{2}}+C$$

答案

$$$\int \frac{\ln\left(x\right)}{x^{3}}\, dx = \frac{- 2 \ln\left(x\right) - 1}{4 x^{2}} + C$$$A


Please try a new game Rotatly