$$$x^{5} \ln\left(7 x\right)$$$ 的積分

此計算器將求出 $$$x^{5} \ln\left(7 x\right)$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int x^{5} \ln\left(7 x\right)\, dx$$$

解答

對於積分 $$$\int{x^{5} \ln{\left(7 x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\ln{\left(7 x \right)}$$$$$$\operatorname{dv}=x^{5} dx$$$

$$$\operatorname{du}=\left(\ln{\left(7 x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(步驟見 »),且 $$$\operatorname{v}=\int{x^{5} d x}=\frac{x^{6}}{6}$$$(步驟見 »)。

因此,

$${\color{red}{\int{x^{5} \ln{\left(7 x \right)} d x}}}={\color{red}{\left(\ln{\left(7 x \right)} \cdot \frac{x^{6}}{6}-\int{\frac{x^{6}}{6} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{x^{6} \ln{\left(7 x \right)}}{6} - \int{\frac{x^{5}}{6} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{6}$$$$$$f{\left(x \right)} = x^{5}$$$

$$\frac{x^{6} \ln{\left(7 x \right)}}{6} - {\color{red}{\int{\frac{x^{5}}{6} d x}}} = \frac{x^{6} \ln{\left(7 x \right)}}{6} - {\color{red}{\left(\frac{\int{x^{5} d x}}{6}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=5$$$

$$\frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{{\color{red}{\int{x^{5} d x}}}}{6}=\frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{{\color{red}{\frac{x^{1 + 5}}{1 + 5}}}}{6}=\frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{{\color{red}{\left(\frac{x^{6}}{6}\right)}}}{6}$$

因此,

$$\int{x^{5} \ln{\left(7 x \right)} d x} = \frac{x^{6} \ln{\left(7 x \right)}}{6} - \frac{x^{6}}{36}$$

化簡:

$$\int{x^{5} \ln{\left(7 x \right)} d x} = \frac{x^{6} \left(6 \ln{\left(x \right)} - 1 + 6 \ln{\left(7 \right)}\right)}{36}$$

加上積分常數:

$$\int{x^{5} \ln{\left(7 x \right)} d x} = \frac{x^{6} \left(6 \ln{\left(x \right)} - 1 + 6 \ln{\left(7 \right)}\right)}{36}+C$$

答案

$$$\int x^{5} \ln\left(7 x\right)\, dx = \frac{x^{6} \left(6 \ln\left(x\right) - 1 + 6 \ln\left(7\right)\right)}{36} + C$$$A


Please try a new game Rotatly