$$$x^{3} e^{- x} \sin{\left(2 \right)}$$$ 的積分

此計算器將求出 $$$x^{3} e^{- x} \sin{\left(2 \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int x^{3} e^{- x} \sin{\left(2 \right)}\, dx$$$

三角函數的參數預設為弧度。若要以度為單位輸入,請將參數乘以 pi/180,例如將 45° 寫成 45*pi/180;或使用在函數名稱後加上 'd' 的對應函數,例如將 sin(45°) 寫成 sind(45)。

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\sin{\left(2 \right)}$$$$$$f{\left(x \right)} = x^{3} e^{- x}$$$

$${\color{red}{\int{x^{3} e^{- x} \sin{\left(2 \right)} d x}}} = {\color{red}{\sin{\left(2 \right)} \int{x^{3} e^{- x} d x}}}$$

對於積分 $$$\int{x^{3} e^{- x} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x^{3}$$$$$$\operatorname{dv}=e^{- x} dx$$$

$$$\operatorname{du}=\left(x^{3}\right)^{\prime }dx=3 x^{2} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$(步驟見 »)。

該積分變為

$$\sin{\left(2 \right)} {\color{red}{\int{x^{3} e^{- x} d x}}}=\sin{\left(2 \right)} {\color{red}{\left(x^{3} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 3 x^{2} d x}\right)}}=\sin{\left(2 \right)} {\color{red}{\left(- x^{3} e^{- x} - \int{\left(- 3 x^{2} e^{- x}\right)d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=-3$$$$$$f{\left(x \right)} = x^{2} e^{- x}$$$

$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - {\color{red}{\int{\left(- 3 x^{2} e^{- x}\right)d x}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - {\color{red}{\left(- 3 \int{x^{2} e^{- x} d x}\right)}}\right)$$

對於積分 $$$\int{x^{2} e^{- x} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x^{2}$$$$$$\operatorname{dv}=e^{- x} dx$$$

$$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$(步驟見 »)。

因此,

$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} + 3 {\color{red}{\int{x^{2} e^{- x} d x}}}\right)=\sin{\left(2 \right)} \left(- x^{3} e^{- x} + 3 {\color{red}{\left(x^{2} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 2 x d x}\right)}}\right)=\sin{\left(2 \right)} \left(- x^{3} e^{- x} + 3 {\color{red}{\left(- x^{2} e^{- x} - \int{\left(- 2 x e^{- x}\right)d x}\right)}}\right)$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=-2$$$$$$f{\left(x \right)} = x e^{- x}$$$

$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 3 {\color{red}{\int{\left(- 2 x e^{- x}\right)d x}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 3 {\color{red}{\left(- 2 \int{x e^{- x} d x}\right)}}\right)$$

對於積分 $$$\int{x e^{- x} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=e^{- x} dx$$$

$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$(步驟見 »)。

因此,

$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} + 6 {\color{red}{\int{x e^{- x} d x}}}\right)=\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} + 6 {\color{red}{\left(x \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 1 d x}\right)}}\right)=\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} + 6 {\color{red}{\left(- x e^{- x} - \int{\left(- e^{- x}\right)d x}\right)}}\right)$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=-1$$$$$$f{\left(x \right)} = e^{- x}$$$

$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 {\color{red}{\int{\left(- e^{- x}\right)d x}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 {\color{red}{\left(- \int{e^{- x} d x}\right)}}\right)$$

$$$u=- x$$$

$$$du=\left(- x\right)^{\prime }dx = - dx$$$ (步驟見»),並可得 $$$dx = - du$$$

因此,

$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} + 6 {\color{red}{\int{e^{- x} d x}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} + 6 {\color{red}{\int{\left(- e^{u}\right)d u}}}\right)$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$$$$f{\left(u \right)} = e^{u}$$$

$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} + 6 {\color{red}{\int{\left(- e^{u}\right)d u}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} + 6 {\color{red}{\left(- \int{e^{u} d u}\right)}}\right)$$

指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$

$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 {\color{red}{\int{e^{u} d u}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 {\color{red}{e^{u}}}\right)$$

回顧一下 $$$u=- x$$$

$$\sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 e^{{\color{red}{u}}}\right) = \sin{\left(2 \right)} \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 e^{{\color{red}{\left(- x\right)}}}\right)$$

因此,

$$\int{x^{3} e^{- x} \sin{\left(2 \right)} d x} = \left(- x^{3} e^{- x} - 3 x^{2} e^{- x} - 6 x e^{- x} - 6 e^{- x}\right) \sin{\left(2 \right)}$$

化簡:

$$\int{x^{3} e^{- x} \sin{\left(2 \right)} d x} = - \left(x^{3} + 3 x^{2} + 6 x + 6\right) e^{- x} \sin{\left(2 \right)}$$

加上積分常數:

$$\int{x^{3} e^{- x} \sin{\left(2 \right)} d x} = - \left(x^{3} + 3 x^{2} + 6 x + 6\right) e^{- x} \sin{\left(2 \right)}+C$$

答案

$$$\int x^{3} e^{- x} \sin{\left(2 \right)}\, dx = - \left(x^{3} + 3 x^{2} + 6 x + 6\right) e^{- x} \sin{\left(2 \right)} + C$$$A


Please try a new game Rotatly