$$$x \sin^{2}{\left(x \right)}$$$ 的積分
您的輸入
求$$$\int x \sin^{2}{\left(x \right)}\, dx$$$。
解答
套用降冪公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$,令 $$$\alpha=x$$$:
$${\color{red}{\int{x \sin^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{x \left(1 - \cos{\left(2 x \right)}\right)}{2} d x}}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(x \right)} = x \left(1 - \cos{\left(2 x \right)}\right)$$$:
$${\color{red}{\int{\frac{x \left(1 - \cos{\left(2 x \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{x \left(1 - \cos{\left(2 x \right)}\right) d x}}{2}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{x \left(1 - \cos{\left(2 x \right)}\right) d x}}}}{2} = \frac{{\color{red}{\int{\left(- x \cos{\left(2 x \right)} + x\right)d x}}}}{2}$$
逐項積分:
$$\frac{{\color{red}{\int{\left(- x \cos{\left(2 x \right)} + x\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{x d x} - \int{x \cos{\left(2 x \right)} d x}\right)}}}{2}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$:
$$- \frac{\int{x \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{x d x}}}}{2}=- \frac{\int{x \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=- \frac{\int{x \cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$
對於積分 $$$\int{x \cos{\left(2 x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=x$$$ 與 $$$\operatorname{dv}=\cos{\left(2 x \right)} dx$$$。
則 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{\cos{\left(2 x \right)} d x}=\frac{\sin{\left(2 x \right)}}{2}$$$(步驟見 »)。
所以,
$$\frac{x^{2}}{4} - \frac{{\color{red}{\int{x \cos{\left(2 x \right)} d x}}}}{2}=\frac{x^{2}}{4} - \frac{{\color{red}{\left(x \cdot \frac{\sin{\left(2 x \right)}}{2}-\int{\frac{\sin{\left(2 x \right)}}{2} \cdot 1 d x}\right)}}}{2}=\frac{x^{2}}{4} - \frac{{\color{red}{\left(\frac{x \sin{\left(2 x \right)}}{2} - \int{\frac{\sin{\left(2 x \right)}}{2} d x}\right)}}}{2}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}}{2} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}}{2}$$
令 $$$u=2 x$$$。
則 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$。
因此,
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{4} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{4} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{4}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{8} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{8}$$
回顧一下 $$$u=2 x$$$:
$$\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left({\color{red}{u}} \right)}}{8} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{8}$$
因此,
$$\int{x \sin^{2}{\left(x \right)} d x} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{8}$$
加上積分常數:
$$\int{x \sin^{2}{\left(x \right)} d x} = \frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{8}+C$$
答案
$$$\int x \sin^{2}{\left(x \right)}\, dx = \left(\frac{x^{2}}{4} - \frac{x \sin{\left(2 x \right)}}{4} - \frac{\cos{\left(2 x \right)}}{8}\right) + C$$$A