$$$65536 x^{41}$$$ 的積分
您的輸入
求$$$\int 65536 x^{41}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=65536$$$ 與 $$$f{\left(x \right)} = x^{41}$$$:
$${\color{red}{\int{65536 x^{41} d x}}} = {\color{red}{\left(65536 \int{x^{41} d x}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=41$$$:
$$65536 {\color{red}{\int{x^{41} d x}}}=65536 {\color{red}{\frac{x^{1 + 41}}{1 + 41}}}=65536 {\color{red}{\left(\frac{x^{42}}{42}\right)}}$$
因此,
$$\int{65536 x^{41} d x} = \frac{32768 x^{42}}{21}$$
加上積分常數:
$$\int{65536 x^{41} d x} = \frac{32768 x^{42}}{21}+C$$
答案
$$$\int 65536 x^{41}\, dx = \frac{32768 x^{42}}{21} + C$$$A
Please try a new game Rotatly