$$$\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$。
解答
重寫被積函數:
$${\color{red}{\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$
令 $$$u=\sec{\left(x \right)}$$$。
則 $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$。
該積分變為
$${\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\int{1 d u}}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
回顧一下 $$$u=\sec{\left(x \right)}$$$:
$${\color{red}{u}} = {\color{red}{\sec{\left(x \right)}}}$$
因此,
$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}$$
加上積分常數:
$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}+C$$
答案
$$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \sec{\left(x \right)} + C$$$A