$$$\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}$$$ 的積分

此計算器將求出 $$$\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$

解答

重寫被積函數:

$${\color{red}{\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$

$$$u=\sec{\left(x \right)}$$$

$$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$

該積分變為

$${\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\int{1 d u}}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$

$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$

回顧一下 $$$u=\sec{\left(x \right)}$$$

$${\color{red}{u}} = {\color{red}{\sec{\left(x \right)}}}$$

因此,

$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}$$

加上積分常數:

$$\int{\frac{\tan{\left(x \right)}}{\cos{\left(x \right)}} d x} = \sec{\left(x \right)}+C$$

答案

$$$\int \frac{\tan{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \sec{\left(x \right)} + C$$$A


Please try a new game Rotatly