$$$\tan^{3}{\left(x \right)} \sec^{6}{\left(x \right)}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \tan^{3}{\left(x \right)} \sec^{6}{\left(x \right)}\, dx$$$。
解答
抽出一個正切,並用正割表示其餘部分,使用公式 $$$\tan^2\left(x \right)=\sec^2\left(x \right)-1$$$:
$${\color{red}{\int{\tan^{3}{\left(x \right)} \sec^{6}{\left(x \right)} d x}}} = {\color{red}{\int{\left(\sec^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)} \sec^{6}{\left(x \right)} d x}}}$$
令 $$$u=\sec{\left(x \right)}$$$。
則 $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$。
所以,
$${\color{red}{\int{\left(\sec^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)} \sec^{6}{\left(x \right)} d x}}} = {\color{red}{\int{u^{5} \left(u^{2} - 1\right) d u}}}$$
Expand the expression:
$${\color{red}{\int{u^{5} \left(u^{2} - 1\right) d u}}} = {\color{red}{\int{\left(u^{7} - u^{5}\right)d u}}}$$
逐項積分:
$${\color{red}{\int{\left(u^{7} - u^{5}\right)d u}}} = {\color{red}{\left(- \int{u^{5} d u} + \int{u^{7} d u}\right)}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=7$$$:
$$- \int{u^{5} d u} + {\color{red}{\int{u^{7} d u}}}=- \int{u^{5} d u} + {\color{red}{\frac{u^{1 + 7}}{1 + 7}}}=- \int{u^{5} d u} + {\color{red}{\left(\frac{u^{8}}{8}\right)}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=5$$$:
$$\frac{u^{8}}{8} - {\color{red}{\int{u^{5} d u}}}=\frac{u^{8}}{8} - {\color{red}{\frac{u^{1 + 5}}{1 + 5}}}=\frac{u^{8}}{8} - {\color{red}{\left(\frac{u^{6}}{6}\right)}}$$
回顧一下 $$$u=\sec{\left(x \right)}$$$:
$$- \frac{{\color{red}{u}}^{6}}{6} + \frac{{\color{red}{u}}^{8}}{8} = - \frac{{\color{red}{\sec{\left(x \right)}}}^{6}}{6} + \frac{{\color{red}{\sec{\left(x \right)}}}^{8}}{8}$$
因此,
$$\int{\tan^{3}{\left(x \right)} \sec^{6}{\left(x \right)} d x} = \frac{\sec^{8}{\left(x \right)}}{8} - \frac{\sec^{6}{\left(x \right)}}{6}$$
加上積分常數:
$$\int{\tan^{3}{\left(x \right)} \sec^{6}{\left(x \right)} d x} = \frac{\sec^{8}{\left(x \right)}}{8} - \frac{\sec^{6}{\left(x \right)}}{6}+C$$
答案
$$$\int \tan^{3}{\left(x \right)} \sec^{6}{\left(x \right)}\, dx = \left(\frac{\sec^{8}{\left(x \right)}}{8} - \frac{\sec^{6}{\left(x \right)}}{6}\right) + C$$$A