$$$\operatorname{atan}{\left(2 x \right)}$$$ 的積分
您的輸入
求$$$\int \operatorname{atan}{\left(2 x \right)}\, dx$$$。
解答
令 $$$u=2 x$$$。
則 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$。
因此,
$${\color{red}{\int{\operatorname{atan}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{2} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\operatorname{atan}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\operatorname{atan}{\left(u \right)} d u}}{2}\right)}}$$
對於積分 $$$\int{\operatorname{atan}{\left(u \right)} d u}$$$,使用分部積分法 $$$\int \operatorname{\mu} \operatorname{dv} = \operatorname{\mu}\operatorname{v} - \int \operatorname{v} \operatorname{d\mu}$$$。
令 $$$\operatorname{\mu}=\operatorname{atan}{\left(u \right)}$$$ 與 $$$\operatorname{dv}=du$$$。
則 $$$\operatorname{d\mu}=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du=\frac{du}{u^{2} + 1}$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d u}=u$$$(步驟見 »)。
因此,
$$\frac{{\color{red}{\int{\operatorname{atan}{\left(u \right)} d u}}}}{2}=\frac{{\color{red}{\left(\operatorname{atan}{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u^{2} + 1} d u}\right)}}}{2}=\frac{{\color{red}{\left(u \operatorname{atan}{\left(u \right)} - \int{\frac{u}{u^{2} + 1} d u}\right)}}}{2}$$
令 $$$v=u^{2} + 1$$$。
則 $$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (步驟見»),並可得 $$$u du = \frac{dv}{2}$$$。
所以,
$$\frac{u \operatorname{atan}{\left(u \right)}}{2} - \frac{{\color{red}{\int{\frac{u}{u^{2} + 1} d u}}}}{2} = \frac{u \operatorname{atan}{\left(u \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{2}$$
套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(v \right)} = \frac{1}{v}$$$:
$$\frac{u \operatorname{atan}{\left(u \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{2 v} d v}}}}{2} = \frac{u \operatorname{atan}{\left(u \right)}}{2} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}}{2}$$
$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{u \operatorname{atan}{\left(u \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{4} = \frac{u \operatorname{atan}{\left(u \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{4}$$
回顧一下 $$$v=u^{2} + 1$$$:
$$\frac{u \operatorname{atan}{\left(u \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{4} = \frac{u \operatorname{atan}{\left(u \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{4}$$
回顧一下 $$$u=2 x$$$:
$$- \frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{4} + \frac{{\color{red}{u}} \operatorname{atan}{\left({\color{red}{u}} \right)}}{2} = - \frac{\ln{\left(1 + {\color{red}{\left(2 x\right)}}^{2} \right)}}{4} + \frac{{\color{red}{\left(2 x\right)}} \operatorname{atan}{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
因此,
$$\int{\operatorname{atan}{\left(2 x \right)} d x} = x \operatorname{atan}{\left(2 x \right)} - \frac{\ln{\left(4 x^{2} + 1 \right)}}{4}$$
加上積分常數:
$$\int{\operatorname{atan}{\left(2 x \right)} d x} = x \operatorname{atan}{\left(2 x \right)} - \frac{\ln{\left(4 x^{2} + 1 \right)}}{4}+C$$
答案
$$$\int \operatorname{atan}{\left(2 x \right)}\, dx = \left(x \operatorname{atan}{\left(2 x \right)} - \frac{\ln\left(4 x^{2} + 1\right)}{4}\right) + C$$$A