$$$\frac{\sqrt{x^{2} - 9}}{x}$$$ 的積分
您的輸入
求$$$\int \frac{\sqrt{x^{2} - 9}}{x}\, dx$$$。
解答
令 $$$x=3 \cosh{\left(u \right)}$$$。
則 $$$dx=\left(3 \cosh{\left(u \right)}\right)^{\prime }du = 3 \sinh{\left(u \right)} du$$$(步驟見»)。
此外,由此可得 $$$u=\operatorname{acosh}{\left(\frac{x}{3} \right)}$$$。
因此,
$$$\frac{\sqrt{x^{2} - 9}}{x} = \frac{\sqrt{9 \cosh^{2}{\left( u \right)} - 9}}{3 \cosh{\left( u \right)}}$$$
使用恆等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{\sqrt{9 \cosh^{2}{\left( u \right)} - 9}}{3 \cosh{\left( u \right)}}=\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)}}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}}$$$
假設 $$$\sinh{\left( u \right)} \ge 0$$$,可得如下:
$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)}}$$$
積分變為
$${\color{red}{\int{\frac{\sqrt{x^{2} - 9}}{x} d x}}} = {\color{red}{\int{\frac{3 \sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=3$$$ 與 $$$f{\left(u \right)} = \frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}}$$$:
$${\color{red}{\int{\frac{3 \sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}} = {\color{red}{\left(3 \int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}\right)}}$$
將分子與分母同乘一個雙曲餘弦,並使用公式 $$$\cosh^2\left(\alpha \right)=\sinh^2\left(\alpha \right)+1$$$(取 $$$\alpha= u $$$),把其餘部分都以雙曲正弦表示:
$$3 {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}} = 3 {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}}$$
令 $$$v=\sinh{\left(u \right)}$$$。
則 $$$dv=\left(\sinh{\left(u \right)}\right)^{\prime }du = \cosh{\left(u \right)} du$$$ (步驟見»),並可得 $$$\cosh{\left(u \right)} du = dv$$$。
該積分變為
$$3 {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}} = 3 {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$
重寫並拆分分式:
$$3 {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = 3 {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$
逐項積分:
$$3 {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = 3 {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dv = c v$$$:
$$- 3 \int{\frac{1}{v^{2} + 1} d v} + 3 {\color{red}{\int{1 d v}}} = - 3 \int{\frac{1}{v^{2} + 1} d v} + 3 {\color{red}{v}}$$
$$$\frac{1}{v^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$3 v - 3 {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = 3 v - 3 {\color{red}{\operatorname{atan}{\left(v \right)}}}$$
回顧一下 $$$v=\sinh{\left(u \right)}$$$:
$$- 3 \operatorname{atan}{\left({\color{red}{v}} \right)} + 3 {\color{red}{v}} = - 3 \operatorname{atan}{\left({\color{red}{\sinh{\left(u \right)}}} \right)} + 3 {\color{red}{\sinh{\left(u \right)}}}$$
回顧一下 $$$u=\operatorname{acosh}{\left(\frac{x}{3} \right)}$$$:
$$3 \sinh{\left({\color{red}{u}} \right)} - 3 \operatorname{atan}{\left(\sinh{\left({\color{red}{u}} \right)} \right)} = 3 \sinh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{3} \right)}}} \right)} - 3 \operatorname{atan}{\left(\sinh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{3} \right)}}} \right)} \right)}$$
因此,
$$\int{\frac{\sqrt{x^{2} - 9}}{x} d x} = 3 \sqrt{\frac{x}{3} - 1} \sqrt{\frac{x}{3} + 1} - 3 \operatorname{atan}{\left(\sqrt{\frac{x}{3} - 1} \sqrt{\frac{x}{3} + 1} \right)}$$
化簡:
$$\int{\frac{\sqrt{x^{2} - 9}}{x} d x} = \sqrt{x - 3} \sqrt{x + 3} - 3 \operatorname{atan}{\left(\frac{\sqrt{x - 3} \sqrt{x + 3}}{3} \right)}$$
加上積分常數:
$$\int{\frac{\sqrt{x^{2} - 9}}{x} d x} = \sqrt{x - 3} \sqrt{x + 3} - 3 \operatorname{atan}{\left(\frac{\sqrt{x - 3} \sqrt{x + 3}}{3} \right)}+C$$
答案
$$$\int \frac{\sqrt{x^{2} - 9}}{x}\, dx = \left(\sqrt{x - 3} \sqrt{x + 3} - 3 \operatorname{atan}{\left(\frac{\sqrt{x - 3} \sqrt{x + 3}}{3} \right)}\right) + C$$$A