$$$\sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \left(\sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(\sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{\frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}} d x} + \int{\sin{\left(x \right)} d x}\right)}}$$
把分子與分母同乘以一個正弦,並將其餘全部用餘弦表示,使用公式 $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$,其中 $$$\alpha=x$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x}}}$$
令 $$$u=\cos{\left(x \right)}$$$。
則 $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\sin{\left(x \right)} dx = - du$$$。
所以,
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\left(- \frac{u^{2}}{1 - u^{2}}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \frac{u^{2}}{1 - u^{2}}$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\left(- \frac{u^{2}}{1 - u^{2}}\right)d u}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\left(- \int{\frac{u^{2}}{1 - u^{2}} d u}\right)}}$$
由於分子次數不小於分母次數,進行多項式長除法(步驟見»):
$$\int{\sin{\left(x \right)} d x} + {\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}} = \int{\sin{\left(x \right)} d x} + {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}}$$
逐項積分:
$$\int{\sin{\left(x \right)} d x} + {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}} = \int{\sin{\left(x \right)} d x} + {\color{red}{\left(- \int{1 d u} + \int{\frac{1}{1 - u^{2}} d u}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$:
$$\int{\sin{\left(x \right)} d x} + \int{\frac{1}{1 - u^{2}} d u} - {\color{red}{\int{1 d u}}} = \int{\sin{\left(x \right)} d x} + \int{\frac{1}{1 - u^{2}} d u} - {\color{red}{u}}$$
進行部分分式分解(步驟可見 »):
$$- u + \int{\sin{\left(x \right)} d x} + {\color{red}{\int{\frac{1}{1 - u^{2}} d u}}} = - u + \int{\sin{\left(x \right)} d x} + {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}}$$
逐項積分:
$$- u + \int{\sin{\left(x \right)} d x} + {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}} = - u + \int{\sin{\left(x \right)} d x} + {\color{red}{\left(- \int{\frac{1}{2 \left(u - 1\right)} d u} + \int{\frac{1}{2 \left(u + 1\right)} d u}\right)}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \frac{1}{u + 1}$$$:
$$- u + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} + {\color{red}{\int{\frac{1}{2 \left(u + 1\right)} d u}}} = - u + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u + 1} d u}}{2}\right)}}$$
令 $$$v=u + 1$$$。
則 $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (步驟見»),並可得 $$$du = dv$$$。
該積分可改寫為
$$- u + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{u + 1} d u}}}}{2} = - u + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- u + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - u + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
回顧一下 $$$v=u + 1$$$:
$$- u + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u} = - u + \frac{\ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - \int{\frac{1}{2 \left(u - 1\right)} d u}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \frac{1}{u - 1}$$$:
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - {\color{red}{\int{\frac{1}{2 \left(u - 1\right)} d u}}} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{u - 1} d u}}{2}\right)}}$$
令 $$$v=u - 1$$$。
則 $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (步驟見»),並可得 $$$du = dv$$$。
該積分可改寫為
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
回顧一下 $$$v=u - 1$$$:
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x}$$
回顧一下 $$$u=\cos{\left(x \right)}$$$:
$$- \frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - {\color{red}{u}} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{2} + \int{\sin{\left(x \right)} d x} - {\color{red}{\cos{\left(x \right)}}}$$
正弦函數的積分為 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2} - \cos{\left(x \right)} + {\color{red}{\int{\sin{\left(x \right)} d x}}} = - \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2} - \cos{\left(x \right)} + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
因此,
$$\int{\left(\sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}\right)d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2} - 2 \cos{\left(x \right)}$$
加上積分常數:
$$\int{\left(\sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}\right)d x} = - \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2} - 2 \cos{\left(x \right)}+C$$
答案
$$$\int \left(\sin{\left(x \right)} - \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)}}\right)\, dx = \left(- \frac{\ln\left(\left|{\cos{\left(x \right)} - 1}\right|\right)}{2} + \frac{\ln\left(\left|{\cos{\left(x \right)} + 1}\right|\right)}{2} - 2 \cos{\left(x \right)}\right) + C$$$A