$$$\sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)}$$$ 的積分

此計算器將求出 $$$\sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)}\, dx$$$

三角函數的參數預設為弧度。若要以度為單位輸入,請將參數乘以 pi/180,例如將 45° 寫成 45*pi/180;或使用在函數名稱後加上 'd' 的對應函數,例如將 sin(45°) 寫成 sind(45)。

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\cos{\left(2 \right)}$$$$$$f{\left(x \right)} = \sin{\left(x \right)} \cos{\left(x \right)}$$$

$${\color{red}{\int{\sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\cos{\left(2 \right)} \int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}}$$

$$$u=\sin{\left(x \right)}$$$

$$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\cos{\left(x \right)} dx = du$$$

該積分變為

$$\cos{\left(2 \right)} {\color{red}{\int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}} = \cos{\left(2 \right)} {\color{red}{\int{u d u}}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$\cos{\left(2 \right)} {\color{red}{\int{u d u}}}=\cos{\left(2 \right)} {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=\cos{\left(2 \right)} {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$

回顧一下 $$$u=\sin{\left(x \right)}$$$

$$\frac{\cos{\left(2 \right)} {\color{red}{u}}^{2}}{2} = \frac{\cos{\left(2 \right)} {\color{red}{\sin{\left(x \right)}}}^{2}}{2}$$

因此,

$$\int{\sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)} d x} = \frac{\sin^{2}{\left(x \right)} \cos{\left(2 \right)}}{2}$$

加上積分常數:

$$\int{\sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)} d x} = \frac{\sin^{2}{\left(x \right)} \cos{\left(2 \right)}}{2}+C$$

答案

$$$\int \sin{\left(x \right)} \cos{\left(2 \right)} \cos{\left(x \right)}\, dx = \frac{\sin^{2}{\left(x \right)} \cos{\left(2 \right)}}{2} + C$$$A


Please try a new game Rotatly