$$$\sin^{2}{\left(x \right)} \sin{\left(2 x \right)}$$$ 的積分

此計算器將求出 $$$\sin^{2}{\left(x \right)} \sin{\left(2 x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}\, dx$$$

解答

套用降冪公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$,令 $$$\alpha=x$$$:

$${\color{red}{\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{2} d x}}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}$$$

$${\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)} d x}}{2}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right) \sin{\left(2 x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{2}$$

逐項積分:

$$\frac{{\color{red}{\int{\left(- \sin{\left(2 x \right)} \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{\sin{\left(2 x \right)} \cos{\left(2 x \right)} d x} + \int{\sin{\left(2 x \right)} d x}\right)}}}{2}$$

$$$u=\sin{\left(2 x \right)}$$$

$$$du=\left(\sin{\left(2 x \right)}\right)^{\prime }dx = 2 \cos{\left(2 x \right)} dx$$$ (步驟見»),並可得 $$$\cos{\left(2 x \right)} dx = \frac{du}{2}$$$

所以,

$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} \cos{\left(2 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{u}{2} d u}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = u$$$

$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{\frac{u}{2} d u}}}}{2} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{\int{u d u}}{2}\right)}}}{2}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{u d u}}}}{4}=\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{4}=\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{4}$$

回顧一下 $$$u=\sin{\left(2 x \right)}$$$

$$\frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{u}}^{2}}{8} = \frac{\int{\sin{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\sin{\left(2 x \right)}}}^{2}}{8}$$

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$

該積分變為

$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$

$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$

正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$

$$- \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = - \frac{\sin^{2}{\left(2 x \right)}}{8} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$

回顧一下 $$$u=2 x$$$

$$- \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left({\color{red}{u}} \right)}}{4} = - \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$

因此,

$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = - \frac{\sin^{2}{\left(2 x \right)}}{8} - \frac{\cos{\left(2 x \right)}}{4}$$

化簡:

$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = \frac{\sin^{4}{\left(x \right)}}{2} - \frac{1}{4}$$

加上積分常數(並從表達式中移除常數項):

$$\int{\sin^{2}{\left(x \right)} \sin{\left(2 x \right)} d x} = \frac{\sin^{4}{\left(x \right)}}{2}+C$$

答案

$$$\int \sin^{2}{\left(x \right)} \sin{\left(2 x \right)}\, dx = \frac{\sin^{4}{\left(x \right)}}{2} + C$$$A


Please try a new game Rotatly