$$$\sin{\left(x \right)} \sec^{2}{\left(\cos{\left(x \right)} \right)}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \sin{\left(x \right)} \sec^{2}{\left(\cos{\left(x \right)} \right)}\, dx$$$。
解答
令 $$$u=\cos{\left(x \right)}$$$。
則 $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\sin{\left(x \right)} dx = - du$$$。
因此,
$${\color{red}{\int{\sin{\left(x \right)} \sec^{2}{\left(\cos{\left(x \right)} \right)} d x}}} = {\color{red}{\int{\left(- \sec^{2}{\left(u \right)}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \sec^{2}{\left(u \right)}$$$:
$${\color{red}{\int{\left(- \sec^{2}{\left(u \right)}\right)d u}}} = {\color{red}{\left(- \int{\sec^{2}{\left(u \right)} d u}\right)}}$$
$$$\sec^{2}{\left(u \right)}$$$ 的積分是 $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$:
$$- {\color{red}{\int{\sec^{2}{\left(u \right)} d u}}} = - {\color{red}{\tan{\left(u \right)}}}$$
回顧一下 $$$u=\cos{\left(x \right)}$$$:
$$- \tan{\left({\color{red}{u}} \right)} = - \tan{\left({\color{red}{\cos{\left(x \right)}}} \right)}$$
因此,
$$\int{\sin{\left(x \right)} \sec^{2}{\left(\cos{\left(x \right)} \right)} d x} = - \tan{\left(\cos{\left(x \right)} \right)}$$
加上積分常數:
$$\int{\sin{\left(x \right)} \sec^{2}{\left(\cos{\left(x \right)} \right)} d x} = - \tan{\left(\cos{\left(x \right)} \right)}+C$$
答案
$$$\int \sin{\left(x \right)} \sec^{2}{\left(\cos{\left(x \right)} \right)}\, dx = - \tan{\left(\cos{\left(x \right)} \right)} + C$$$A