$$$\sin^{2}{\left(\frac{x}{2} \right)}$$$ 的積分
您的輸入
求$$$\int \sin^{2}{\left(\frac{x}{2} \right)}\, dx$$$。
解答
令 $$$u=\frac{x}{2}$$$。
則 $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (步驟見»),並可得 $$$dx = 2 du$$$。
因此,
$${\color{red}{\int{\sin^{2}{\left(\frac{x}{2} \right)} d x}}} = {\color{red}{\int{2 \sin^{2}{\left(u \right)} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$ 與 $$$f{\left(u \right)} = \sin^{2}{\left(u \right)}$$$:
$${\color{red}{\int{2 \sin^{2}{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sin^{2}{\left(u \right)} d u}\right)}}$$
套用降冪公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$,令 $$$\alpha= u $$$:
$$2 {\color{red}{\int{\sin^{2}{\left(u \right)} d u}}} = 2 {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = 1 - \cos{\left(2 u \right)}$$$:
$$2 {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 u \right)}}{2}\right)d u}}} = 2 {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}{2}\right)}}$$
逐項積分:
$${\color{red}{\int{\left(1 - \cos{\left(2 u \right)}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{\cos{\left(2 u \right)} d u}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$:
$$- \int{\cos{\left(2 u \right)} d u} + {\color{red}{\int{1 d u}}} = - \int{\cos{\left(2 u \right)} d u} + {\color{red}{u}}$$
令 $$$v=2 u$$$。
則 $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (步驟見»),並可得 $$$du = \frac{dv}{2}$$$。
因此,
$$u - {\color{red}{\int{\cos{\left(2 u \right)} d u}}} = u - {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}$$
套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$u - {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}} = u - {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}$$
餘弦函數的積分為 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$u - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{2} = u - \frac{{\color{red}{\sin{\left(v \right)}}}}{2}$$
回顧一下 $$$v=2 u$$$:
$$u - \frac{\sin{\left({\color{red}{v}} \right)}}{2} = u - \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{2}$$
回顧一下 $$$u=\frac{x}{2}$$$:
$$- \frac{\sin{\left(2 {\color{red}{u}} \right)}}{2} + {\color{red}{u}} = - \frac{\sin{\left(2 {\color{red}{\left(\frac{x}{2}\right)}} \right)}}{2} + {\color{red}{\left(\frac{x}{2}\right)}}$$
因此,
$$\int{\sin^{2}{\left(\frac{x}{2} \right)} d x} = \frac{x}{2} - \frac{\sin{\left(x \right)}}{2}$$
化簡:
$$\int{\sin^{2}{\left(\frac{x}{2} \right)} d x} = \frac{x - \sin{\left(x \right)}}{2}$$
加上積分常數:
$$\int{\sin^{2}{\left(\frac{x}{2} \right)} d x} = \frac{x - \sin{\left(x \right)}}{2}+C$$
答案
$$$\int \sin^{2}{\left(\frac{x}{2} \right)}\, dx = \frac{x - \sin{\left(x \right)}}{2} + C$$$A