$$$\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}}$$$$$$\pi$$$ 的積分

此計算器會求出 $$$\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}}$$$$$$\pi$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}}\, d\pi$$$

解答

套用常數倍法則 $$$\int c f{\left(\pi \right)}\, d\pi = c \int f{\left(\pi \right)}\, d\pi$$$,使用 $$$c=\sin^{2}{\left(z \right)}$$$$$$f{\left(\pi \right)} = \frac{1}{\left(- \frac{\pi}{6} + z\right)^{3}}$$$

$${\color{red}{\int{\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi}}} = {\color{red}{\sin^{2}{\left(z \right)} \int{\frac{1}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi}}}$$

$$$u=- \frac{\pi}{6} + z$$$

$$$du=\left(- \frac{\pi}{6} + z\right)^{\prime }d\pi = - \frac{d\pi}{6}$$$ (步驟見»),並可得 $$$d\pi = - 6 du$$$

該積分可改寫為

$$\sin^{2}{\left(z \right)} {\color{red}{\int{\frac{1}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi}}} = \sin^{2}{\left(z \right)} {\color{red}{\int{\left(- \frac{6}{u^{3}}\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-6$$$$$$f{\left(u \right)} = \frac{1}{u^{3}}$$$

$$\sin^{2}{\left(z \right)} {\color{red}{\int{\left(- \frac{6}{u^{3}}\right)d u}}} = \sin^{2}{\left(z \right)} {\color{red}{\left(- 6 \int{\frac{1}{u^{3}} d u}\right)}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-3$$$

$$- 6 \sin^{2}{\left(z \right)} {\color{red}{\int{\frac{1}{u^{3}} d u}}}=- 6 \sin^{2}{\left(z \right)} {\color{red}{\int{u^{-3} d u}}}=- 6 \sin^{2}{\left(z \right)} {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}=- 6 \sin^{2}{\left(z \right)} {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}=- 6 \sin^{2}{\left(z \right)} {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}$$

回顧一下 $$$u=- \frac{\pi}{6} + z$$$

$$3 \sin^{2}{\left(z \right)} {\color{red}{u}}^{-2} = 3 \sin^{2}{\left(z \right)} {\color{red}{\left(- \frac{\pi}{6} + z\right)}}^{-2}$$

因此,

$$\int{\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi} = \frac{3 \sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{2}}$$

化簡:

$$\int{\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi} = \frac{108 \sin^{2}{\left(z \right)}}{\left(- \pi + 6 z\right)^{2}}$$

加上積分常數:

$$\int{\frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}} d \pi} = \frac{108 \sin^{2}{\left(z \right)}}{\left(- \pi + 6 z\right)^{2}}+C$$

答案

$$$\int \frac{\sin^{2}{\left(z \right)}}{\left(- \frac{\pi}{6} + z\right)^{3}}\, d\pi = \frac{108 \sin^{2}{\left(z \right)}}{\left(- \pi + 6 z\right)^{2}} + C$$$A


Please try a new game Rotatly