$$$\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z}$$$$$$\pi$$$ 的積分

此計算器會求出 $$$\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z}$$$$$$\pi$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z}\, d\pi$$$

解答

套用常數倍法則 $$$\int c f{\left(\pi \right)}\, d\pi = c \int f{\left(\pi \right)}\, d\pi$$$,使用 $$$c=\sin^{2}{\left(z \right)}$$$$$$f{\left(\pi \right)} = \frac{1}{- \frac{\pi}{6} + z}$$$

$${\color{red}{\int{\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z} d \pi}}} = {\color{red}{\sin^{2}{\left(z \right)} \int{\frac{1}{- \frac{\pi}{6} + z} d \pi}}}$$

$$$u=- \frac{\pi}{6} + z$$$

$$$du=\left(- \frac{\pi}{6} + z\right)^{\prime }d\pi = - \frac{d\pi}{6}$$$ (步驟見»),並可得 $$$d\pi = - 6 du$$$

因此,

$$\sin^{2}{\left(z \right)} {\color{red}{\int{\frac{1}{- \frac{\pi}{6} + z} d \pi}}} = \sin^{2}{\left(z \right)} {\color{red}{\int{\left(- \frac{6}{u}\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-6$$$$$$f{\left(u \right)} = \frac{1}{u}$$$

$$\sin^{2}{\left(z \right)} {\color{red}{\int{\left(- \frac{6}{u}\right)d u}}} = \sin^{2}{\left(z \right)} {\color{red}{\left(- 6 \int{\frac{1}{u} d u}\right)}}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$- 6 \sin^{2}{\left(z \right)} {\color{red}{\int{\frac{1}{u} d u}}} = - 6 \sin^{2}{\left(z \right)} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回顧一下 $$$u=- \frac{\pi}{6} + z$$$

$$- 6 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} \sin^{2}{\left(z \right)} = - 6 \ln{\left(\left|{{\color{red}{\left(- \frac{\pi}{6} + z\right)}}}\right| \right)} \sin^{2}{\left(z \right)}$$

因此,

$$\int{\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z} d \pi} = - 6 \ln{\left(\left|{\frac{\pi}{6} - z}\right| \right)} \sin^{2}{\left(z \right)}$$

化簡:

$$\int{\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z} d \pi} = 6 \left(- \ln{\left(\left|{\pi - 6 z}\right| \right)} + \ln{\left(6 \right)}\right) \sin^{2}{\left(z \right)}$$

加上積分常數:

$$\int{\frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z} d \pi} = 6 \left(- \ln{\left(\left|{\pi - 6 z}\right| \right)} + \ln{\left(6 \right)}\right) \sin^{2}{\left(z \right)}+C$$

答案

$$$\int \frac{\sin^{2}{\left(z \right)}}{- \frac{\pi}{6} + z}\, d\pi = 6 \left(- \ln\left(\left|{\pi - 6 z}\right|\right) + \ln\left(6\right)\right) \sin^{2}{\left(z \right)} + C$$$A


Please try a new game Rotatly