$$$\sin{\left(\frac{\pi x}{30} \right)}$$$ 的積分
您的輸入
求$$$\int \sin{\left(\frac{\pi x}{30} \right)}\, dx$$$。
解答
令 $$$u=\frac{\pi x}{30}$$$。
則 $$$du=\left(\frac{\pi x}{30}\right)^{\prime }dx = \frac{\pi}{30} dx$$$ (步驟見»),並可得 $$$dx = \frac{30 du}{\pi}$$$。
該積分可改寫為
$${\color{red}{\int{\sin{\left(\frac{\pi x}{30} \right)} d x}}} = {\color{red}{\int{\frac{30 \sin{\left(u \right)}}{\pi} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{30}{\pi}$$$ 與 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\frac{30 \sin{\left(u \right)}}{\pi} d u}}} = {\color{red}{\left(\frac{30 \int{\sin{\left(u \right)} d u}}{\pi}\right)}}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{30 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{\pi} = \frac{30 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{\pi}$$
回顧一下 $$$u=\frac{\pi x}{30}$$$:
$$- \frac{30 \cos{\left({\color{red}{u}} \right)}}{\pi} = - \frac{30 \cos{\left({\color{red}{\left(\frac{\pi x}{30}\right)}} \right)}}{\pi}$$
因此,
$$\int{\sin{\left(\frac{\pi x}{30} \right)} d x} = - \frac{30 \cos{\left(\frac{\pi x}{30} \right)}}{\pi}$$
加上積分常數:
$$\int{\sin{\left(\frac{\pi x}{30} \right)} d x} = - \frac{30 \cos{\left(\frac{\pi x}{30} \right)}}{\pi}+C$$
答案
$$$\int \sin{\left(\frac{\pi x}{30} \right)}\, dx = - \frac{30 \cos{\left(\frac{\pi x}{30} \right)}}{\pi} + C$$$A