$$$\sec^{3}{\left(x \right)}$$$ 的積分
您的輸入
求$$$\int \sec^{3}{\left(x \right)}\, dx$$$。
解答
對於積分 $$$\int{\sec^{3}{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\sec{\left(x \right)}$$$ 與 $$$\operatorname{dv}=\sec^{2}{\left(x \right)} dx$$$。
則 $$$\operatorname{du}=\left(\sec{\left(x \right)}\right)^{\prime }dx=\tan{\left(x \right)} \sec{\left(x \right)} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{\sec^{2}{\left(x \right)} d x}=\tan{\left(x \right)}$$$(步驟見 »)。
該積分可改寫為
$$\int{\sec^{3}{\left(x \right)} d x}=\sec{\left(x \right)} \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot \tan{\left(x \right)} \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\tan^{2}{\left(x \right)} \sec{\left(x \right)} d x}$$
套用公式 $$$\tan^{2}{\left(x \right)} = \sec^{2}{\left(x \right)} - 1$$$:
$$\tan{\left(x \right)} \sec{\left(x \right)} - \int{\tan^{2}{\left(x \right)} \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec{\left(x \right)} d x}$$
展開:
$$\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{3}{\left(x \right)} - \sec{\left(x \right)}\right)d x}$$
差的積分等於積分之差:
$$\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{3}{\left(x \right)} - \sec{\left(x \right)}\right)d x}=\tan{\left(x \right)} \sec{\left(x \right)} + \int{\sec{\left(x \right)} d x} - \int{\sec^{3}{\left(x \right)} d x}$$
因此,我們得到關於該積分的下列簡單線性方程:
$${\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}=\tan{\left(x \right)} \sec{\left(x \right)} + \int{\sec{\left(x \right)} d x} - {\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}$$
解得
$$\int{\sec^{3}{\left(x \right)} d x}=\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{\int{\sec{\left(x \right)} d x}}{2}$$
將正割改寫為 $$$\sec\left(x\right)=\frac{1}{\cos\left(x\right)}$$$:
$$\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\sec{\left(x \right)} d x}}}}{2} = \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{2}$$
使用公式 $$$\cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right)$$$ 將餘弦用正弦表示,然後使用二倍角公式 $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$ 將正弦改寫。:
$$\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{2} = \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{2}$$
將分子與分母同時乘以 $$$\sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right)$$$:
$$\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{2} = \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{2}$$
令 $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$。
則 $$$du=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx$$$ (步驟見»),並可得 $$$\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du$$$。
該積分變為
$$\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{2} = \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
回顧一下 $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} + \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{2} + \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2}$$
因此,
$$\int{\sec^{3}{\left(x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{2} + \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2}$$
加上積分常數:
$$\int{\sec^{3}{\left(x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{2} + \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2}+C$$
答案
$$$\int \sec^{3}{\left(x \right)}\, dx = \left(\frac{\ln\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right|\right)}{2} + \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2}\right) + C$$$A