$$$\sqrt{\frac{1 - t}{t}}$$$ 的積分
您的輸入
求$$$\int \sqrt{\frac{1 - t}{t}}\, dt$$$。
解答
已將輸入重寫為:$$$\int{\sqrt{\frac{1 - t}{t}} d t}=\int{\frac{\sqrt{1 - t}}{\sqrt{t}} d t}$$$。
令 $$$u=\sqrt{t}$$$。
則 $$$du=\left(\sqrt{t}\right)^{\prime }dt = \frac{1}{2 \sqrt{t}} dt$$$ (步驟見»),並可得 $$$\frac{dt}{\sqrt{t}} = 2 du$$$。
該積分變為
$${\color{red}{\int{\frac{\sqrt{1 - t}}{\sqrt{t}} d t}}} = {\color{red}{\int{2 \sqrt{1 - u^{2}} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$ 與 $$$f{\left(u \right)} = \sqrt{1 - u^{2}}$$$:
$${\color{red}{\int{2 \sqrt{1 - u^{2}} d u}}} = {\color{red}{\left(2 \int{\sqrt{1 - u^{2}} d u}\right)}}$$
令 $$$u=\sin{\left(v \right)}$$$。
則 $$$du=\left(\sin{\left(v \right)}\right)^{\prime }dv = \cos{\left(v \right)} dv$$$(步驟見»)。
此外,由此可得 $$$v=\operatorname{asin}{\left(u \right)}$$$。
所以,
$$$\sqrt{1 - u ^{2}} = \sqrt{1 - \sin^{2}{\left( v \right)}}$$$
使用恆等式 $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$:
$$$\sqrt{1 - \sin^{2}{\left( v \right)}}=\sqrt{\cos^{2}{\left( v \right)}}$$$
假設 $$$\cos{\left( v \right)} \ge 0$$$,可得如下:
$$$\sqrt{\cos^{2}{\left( v \right)}} = \cos{\left( v \right)}$$$
所以,
$$2 {\color{red}{\int{\sqrt{1 - u^{2}} d u}}} = 2 {\color{red}{\int{\cos^{2}{\left(v \right)} d v}}}$$
套用降冪公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$,令 $$$\alpha= v $$$:
$$2 {\color{red}{\int{\cos^{2}{\left(v \right)} d v}}} = 2 {\color{red}{\int{\left(\frac{\cos{\left(2 v \right)}}{2} + \frac{1}{2}\right)d v}}}$$
套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(v \right)} = \cos{\left(2 v \right)} + 1$$$:
$$2 {\color{red}{\int{\left(\frac{\cos{\left(2 v \right)}}{2} + \frac{1}{2}\right)d v}}} = 2 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 v \right)} + 1\right)d v}}{2}\right)}}$$
逐項積分:
$${\color{red}{\int{\left(\cos{\left(2 v \right)} + 1\right)d v}}} = {\color{red}{\left(\int{1 d v} + \int{\cos{\left(2 v \right)} d v}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dv = c v$$$:
$$\int{\cos{\left(2 v \right)} d v} + {\color{red}{\int{1 d v}}} = \int{\cos{\left(2 v \right)} d v} + {\color{red}{v}}$$
令 $$$w=2 v$$$。
則 $$$dw=\left(2 v\right)^{\prime }dv = 2 dv$$$ (步驟見»),並可得 $$$dv = \frac{dw}{2}$$$。
因此,
$$v + {\color{red}{\int{\cos{\left(2 v \right)} d v}}} = v + {\color{red}{\int{\frac{\cos{\left(w \right)}}{2} d w}}}$$
套用常數倍法則 $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(w \right)} = \cos{\left(w \right)}$$$:
$$v + {\color{red}{\int{\frac{\cos{\left(w \right)}}{2} d w}}} = v + {\color{red}{\left(\frac{\int{\cos{\left(w \right)} d w}}{2}\right)}}$$
餘弦函數的積分為 $$$\int{\cos{\left(w \right)} d w} = \sin{\left(w \right)}$$$:
$$v + \frac{{\color{red}{\int{\cos{\left(w \right)} d w}}}}{2} = v + \frac{{\color{red}{\sin{\left(w \right)}}}}{2}$$
回顧一下 $$$w=2 v$$$:
$$v + \frac{\sin{\left({\color{red}{w}} \right)}}{2} = v + \frac{\sin{\left({\color{red}{\left(2 v\right)}} \right)}}{2}$$
回顧一下 $$$v=\operatorname{asin}{\left(u \right)}$$$:
$$\frac{\sin{\left(2 {\color{red}{v}} \right)}}{2} + {\color{red}{v}} = \frac{\sin{\left(2 {\color{red}{\operatorname{asin}{\left(u \right)}}} \right)}}{2} + {\color{red}{\operatorname{asin}{\left(u \right)}}}$$
回顧一下 $$$u=\sqrt{t}$$$:
$$\frac{\sin{\left(2 \operatorname{asin}{\left({\color{red}{u}} \right)} \right)}}{2} + \operatorname{asin}{\left({\color{red}{u}} \right)} = \frac{\sin{\left(2 \operatorname{asin}{\left({\color{red}{\sqrt{t}}} \right)} \right)}}{2} + \operatorname{asin}{\left({\color{red}{\sqrt{t}}} \right)}$$
因此,
$$\int{\frac{\sqrt{1 - t}}{\sqrt{t}} d t} = \frac{\sin{\left(2 \operatorname{asin}{\left(\sqrt{t} \right)} \right)}}{2} + \operatorname{asin}{\left(\sqrt{t} \right)}$$
使用公式 $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$,化簡該表達式:
$$\int{\frac{\sqrt{1 - t}}{\sqrt{t}} d t} = \sqrt{t} \sqrt{1 - t} + \operatorname{asin}{\left(\sqrt{t} \right)}$$
加上積分常數:
$$\int{\frac{\sqrt{1 - t}}{\sqrt{t}} d t} = \sqrt{t} \sqrt{1 - t} + \operatorname{asin}{\left(\sqrt{t} \right)}+C$$
答案
$$$\int \sqrt{\frac{1 - t}{t}}\, dt = \left(\sqrt{t} \sqrt{1 - t} + \operatorname{asin}{\left(\sqrt{t} \right)}\right) + C$$$A