$$$r^{n}$$$ 對 $$$n$$$ 的積分
您的輸入
求$$$\int r^{n}\, dn$$$。
解答
Apply the exponential rule $$$\int{a^{n} d n} = \frac{a^{n}}{\ln{\left(a \right)}}$$$ with $$$a=r$$$:
$${\color{red}{\int{r^{n} d n}}} = {\color{red}{\frac{r^{n}}{\ln{\left(r \right)}}}}$$
因此,
$$\int{r^{n} d n} = \frac{r^{n}}{\ln{\left(r \right)}}$$
加上積分常數:
$$\int{r^{n} d n} = \frac{r^{n}}{\ln{\left(r \right)}}+C$$
答案
$$$\int r^{n}\, dn = \frac{r^{n}}{\ln\left(r\right)} + C$$$A
Please try a new game Rotatly