$$$\frac{n}{d}$$$ 對 $$$d$$$ 的積分
您的輸入
求$$$\int \frac{n}{d}\, dd$$$。
解答
套用常數倍法則 $$$\int c f{\left(d \right)}\, dd = c \int f{\left(d \right)}\, dd$$$,使用 $$$c=n$$$ 與 $$$f{\left(d \right)} = \frac{1}{d}$$$:
$${\color{red}{\int{\frac{n}{d} d d}}} = {\color{red}{n \int{\frac{1}{d} d d}}}$$
$$$\frac{1}{d}$$$ 的積分是 $$$\int{\frac{1}{d} d d} = \ln{\left(\left|{d}\right| \right)}$$$:
$$n {\color{red}{\int{\frac{1}{d} d d}}} = n {\color{red}{\ln{\left(\left|{d}\right| \right)}}}$$
因此,
$$\int{\frac{n}{d} d d} = n \ln{\left(\left|{d}\right| \right)}$$
加上積分常數:
$$\int{\frac{n}{d} d d} = n \ln{\left(\left|{d}\right| \right)}+C$$
答案
$$$\int \frac{n}{d}\, dd = n \ln\left(\left|{d}\right|\right) + C$$$A
Please try a new game Rotatly