$$$\ln\left(\frac{x^{n}}{x}\right)$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \ln\left(\frac{x^{n}}{x}\right)\, dx$$$。
解答
已將輸入重寫為:$$$\int{\ln{\left(\frac{x^{n}}{x} \right)} d x}=\int{\left(n - 1\right) \ln{\left(x \right)} d x}$$$。
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=n - 1$$$ 與 $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:
$${\color{red}{\int{\left(n - 1\right) \ln{\left(x \right)} d x}}} = {\color{red}{\left(n - 1\right) \int{\ln{\left(x \right)} d x}}}$$
對於積分 $$$\int{\ln{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\ln{\left(x \right)}$$$ 與 $$$\operatorname{dv}=dx$$$。
則 $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d x}=x$$$(步驟見 »)。
所以,
$$\left(n - 1\right) {\color{red}{\int{\ln{\left(x \right)} d x}}}=\left(n - 1\right) {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=\left(n - 1\right) {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$\left(n - 1\right) \left(x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}}\right) = \left(n - 1\right) \left(x \ln{\left(x \right)} - {\color{red}{x}}\right)$$
因此,
$$\int{\left(n - 1\right) \ln{\left(x \right)} d x} = \left(n - 1\right) \left(x \ln{\left(x \right)} - x\right)$$
化簡:
$$\int{\left(n - 1\right) \ln{\left(x \right)} d x} = x \left(n - 1\right) \left(\ln{\left(x \right)} - 1\right)$$
加上積分常數:
$$\int{\left(n - 1\right) \ln{\left(x \right)} d x} = x \left(n - 1\right) \left(\ln{\left(x \right)} - 1\right)+C$$
答案
$$$\int \ln\left(\frac{x^{n}}{x}\right)\, dx = x \left(n - 1\right) \left(\ln\left(x\right) - 1\right) + C$$$A