$$$\ln\left(x_{0}\right)$$$ 的積分
您的輸入
求$$$\int \ln\left(x_{0}\right)\, dx_{0}$$$。
解答
對於積分 $$$\int{\ln{\left(x_{0} \right)} d x_{0}}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\ln{\left(x_{0} \right)}$$$ 與 $$$\operatorname{dv}=dx_{0}$$$。
則 $$$\operatorname{du}=\left(\ln{\left(x_{0} \right)}\right)^{\prime }dx_{0}=\frac{dx_{0}}{x_{0}}$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d x_{0}}=x_{0}$$$(步驟見 »)。
因此,
$${\color{red}{\int{\ln{\left(x_{0} \right)} d x_{0}}}}={\color{red}{\left(\ln{\left(x_{0} \right)} \cdot x_{0}-\int{x_{0} \cdot \frac{1}{x_{0}} d x_{0}}\right)}}={\color{red}{\left(x_{0} \ln{\left(x_{0} \right)} - \int{1 d x_{0}}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx_{0} = c x_{0}$$$:
$$x_{0} \ln{\left(x_{0} \right)} - {\color{red}{\int{1 d x_{0}}}} = x_{0} \ln{\left(x_{0} \right)} - {\color{red}{x_{0}}}$$
因此,
$$\int{\ln{\left(x_{0} \right)} d x_{0}} = x_{0} \ln{\left(x_{0} \right)} - x_{0}$$
化簡:
$$\int{\ln{\left(x_{0} \right)} d x_{0}} = x_{0} \left(\ln{\left(x_{0} \right)} - 1\right)$$
加上積分常數:
$$\int{\ln{\left(x_{0} \right)} d x_{0}} = x_{0} \left(\ln{\left(x_{0} \right)} - 1\right)+C$$
答案
$$$\int \ln\left(x_{0}\right)\, dx_{0} = x_{0} \left(\ln\left(x_{0}\right) - 1\right) + C$$$A