$$$\ln\left(\frac{x}{2} - 1\right)$$$ 的積分

此計算器將求出 $$$\ln\left(\frac{x}{2} - 1\right)$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \ln\left(\frac{x}{2} - 1\right)\, dx$$$

解答

$$$u=\frac{x}{2} - 1$$$

$$$du=\left(\frac{x}{2} - 1\right)^{\prime }dx = \frac{dx}{2}$$$ (步驟見»),並可得 $$$dx = 2 du$$$

該積分變為

$${\color{red}{\int{\ln{\left(\frac{x}{2} - 1 \right)} d x}}} = {\color{red}{\int{2 \ln{\left(u \right)} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$$$$f{\left(u \right)} = \ln{\left(u \right)}$$$

$${\color{red}{\int{2 \ln{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\ln{\left(u \right)} d u}\right)}}$$

對於積分 $$$\int{\ln{\left(u \right)} d u}$$$,使用分部積分法 $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$

$$$\operatorname{g}=\ln{\left(u \right)}$$$$$$\operatorname{dv}=du$$$

$$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d u}=u$$$(步驟見 »)。

該積分變為

$$2 {\color{red}{\int{\ln{\left(u \right)} d u}}}=2 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=2 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$

$$2 u \ln{\left(u \right)} - 2 {\color{red}{\int{1 d u}}} = 2 u \ln{\left(u \right)} - 2 {\color{red}{u}}$$

回顧一下 $$$u=\frac{x}{2} - 1$$$

$$- 2 {\color{red}{u}} + 2 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - 2 {\color{red}{\left(\frac{x}{2} - 1\right)}} + 2 {\color{red}{\left(\frac{x}{2} - 1\right)}} \ln{\left({\color{red}{\left(\frac{x}{2} - 1\right)}} \right)}$$

因此,

$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + 2 \left(\frac{x}{2} - 1\right) \ln{\left(\frac{x}{2} - 1 \right)} + 2$$

化簡:

$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + \left(x - 2\right) \ln{\left(\frac{x}{2} - 1 \right)} + 2$$

加上積分常數(並從表達式中移除常數項):

$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + \left(x - 2\right) \ln{\left(\frac{x}{2} - 1 \right)}+C$$

答案

$$$\int \ln\left(\frac{x}{2} - 1\right)\, dx = \left(- x + \left(x - 2\right) \ln\left(\frac{x}{2} - 1\right)\right) + C$$$A


Please try a new game Rotatly