$$$\sqrt[3]{x} \ln\left(x\right)$$$ 的積分
您的輸入
求$$$\int \sqrt[3]{x} \ln\left(x\right)\, dx$$$。
解答
對於積分 $$$\int{\sqrt[3]{x} \ln{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\ln{\left(x \right)}$$$ 與 $$$\operatorname{dv}=\sqrt[3]{x} dx$$$。
則 $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(步驟見 »),且 $$$\operatorname{v}=\int{\sqrt[3]{x} d x}=\frac{3 x^{\frac{4}{3}}}{4}$$$(步驟見 »)。
該積分可改寫為
$${\color{red}{\int{\sqrt[3]{x} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \frac{3 x^{\frac{4}{3}}}{4}-\int{\frac{3 x^{\frac{4}{3}}}{4} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \int{\frac{3 \sqrt[3]{x}}{4} d x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{3}{4}$$$ 與 $$$f{\left(x \right)} = \sqrt[3]{x}$$$:
$$\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - {\color{red}{\int{\frac{3 \sqrt[3]{x}}{4} d x}}} = \frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - {\color{red}{\left(\frac{3 \int{\sqrt[3]{x} d x}}{4}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=\frac{1}{3}$$$:
$$\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{\sqrt[3]{x} d x}}}}{4}=\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{x^{\frac{1}{3}} d x}}}}{4}=\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{3 {\color{red}{\frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1}}}}{4}=\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{3 {\color{red}{\left(\frac{3 x^{\frac{4}{3}}}{4}\right)}}}{4}$$
因此,
$$\int{\sqrt[3]{x} \ln{\left(x \right)} d x} = \frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{9 x^{\frac{4}{3}}}{16}$$
化簡:
$$\int{\sqrt[3]{x} \ln{\left(x \right)} d x} = \frac{3 x^{\frac{4}{3}} \left(4 \ln{\left(x \right)} - 3\right)}{16}$$
加上積分常數:
$$\int{\sqrt[3]{x} \ln{\left(x \right)} d x} = \frac{3 x^{\frac{4}{3}} \left(4 \ln{\left(x \right)} - 3\right)}{16}+C$$
答案
$$$\int \sqrt[3]{x} \ln\left(x\right)\, dx = \frac{3 x^{\frac{4}{3}} \left(4 \ln\left(x\right) - 3\right)}{16} + C$$$A