$$$\sqrt[3]{x} \ln\left(x\right)$$$ 的積分

此計算器將求出 $$$\sqrt[3]{x} \ln\left(x\right)$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \sqrt[3]{x} \ln\left(x\right)\, dx$$$

解答

對於積分 $$$\int{\sqrt[3]{x} \ln{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=\sqrt[3]{x} dx$$$

$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(步驟見 »),且 $$$\operatorname{v}=\int{\sqrt[3]{x} d x}=\frac{3 x^{\frac{4}{3}}}{4}$$$(步驟見 »)。

該積分可改寫為

$${\color{red}{\int{\sqrt[3]{x} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \frac{3 x^{\frac{4}{3}}}{4}-\int{\frac{3 x^{\frac{4}{3}}}{4} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \int{\frac{3 \sqrt[3]{x}}{4} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{3}{4}$$$$$$f{\left(x \right)} = \sqrt[3]{x}$$$

$$\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - {\color{red}{\int{\frac{3 \sqrt[3]{x}}{4} d x}}} = \frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - {\color{red}{\left(\frac{3 \int{\sqrt[3]{x} d x}}{4}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=\frac{1}{3}$$$

$$\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{\sqrt[3]{x} d x}}}}{4}=\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{3 {\color{red}{\int{x^{\frac{1}{3}} d x}}}}{4}=\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{3 {\color{red}{\frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1}}}}{4}=\frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{3 {\color{red}{\left(\frac{3 x^{\frac{4}{3}}}{4}\right)}}}{4}$$

因此,

$$\int{\sqrt[3]{x} \ln{\left(x \right)} d x} = \frac{3 x^{\frac{4}{3}} \ln{\left(x \right)}}{4} - \frac{9 x^{\frac{4}{3}}}{16}$$

化簡:

$$\int{\sqrt[3]{x} \ln{\left(x \right)} d x} = \frac{3 x^{\frac{4}{3}} \left(4 \ln{\left(x \right)} - 3\right)}{16}$$

加上積分常數:

$$\int{\sqrt[3]{x} \ln{\left(x \right)} d x} = \frac{3 x^{\frac{4}{3}} \left(4 \ln{\left(x \right)} - 3\right)}{16}+C$$

答案

$$$\int \sqrt[3]{x} \ln\left(x\right)\, dx = \frac{3 x^{\frac{4}{3}} \left(4 \ln\left(x\right) - 3\right)}{16} + C$$$A


Please try a new game Rotatly