$$$f x - g x$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \left(f x - g x\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(f x - g x\right)d x}}} = {\color{red}{\left(\int{f x d x} - \int{g x d x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=f$$$ 與 $$$f{\left(x \right)} = x$$$:
$$- \int{g x d x} + {\color{red}{\int{f x d x}}} = - \int{g x d x} + {\color{red}{f \int{x d x}}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$:
$$f {\color{red}{\int{x d x}}} - \int{g x d x}=f {\color{red}{\frac{x^{1 + 1}}{1 + 1}}} - \int{g x d x}=f {\color{red}{\left(\frac{x^{2}}{2}\right)}} - \int{g x d x}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=g$$$ 與 $$$f{\left(x \right)} = x$$$:
$$\frac{f x^{2}}{2} - {\color{red}{\int{g x d x}}} = \frac{f x^{2}}{2} - {\color{red}{g \int{x d x}}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$:
$$\frac{f x^{2}}{2} - g {\color{red}{\int{x d x}}}=\frac{f x^{2}}{2} - g {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{f x^{2}}{2} - g {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
因此,
$$\int{\left(f x - g x\right)d x} = \frac{f x^{2}}{2} - \frac{g x^{2}}{2}$$
化簡:
$$\int{\left(f x - g x\right)d x} = \frac{x^{2} \left(f - g\right)}{2}$$
加上積分常數:
$$\int{\left(f x - g x\right)d x} = \frac{x^{2} \left(f - g\right)}{2}+C$$
答案
$$$\int \left(f x - g x\right)\, dx = \frac{x^{2} \left(f - g\right)}{2} + C$$$A