$$$f r^{2} t^{2}$$$ 對 $$$t$$$ 的積分
您的輸入
求$$$\int f r^{2} t^{2}\, dt$$$。
解答
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=f r^{2}$$$ 與 $$$f{\left(t \right)} = t^{2}$$$:
$${\color{red}{\int{f r^{2} t^{2} d t}}} = {\color{red}{f r^{2} \int{t^{2} d t}}}$$
套用冪次法則 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$f r^{2} {\color{red}{\int{t^{2} d t}}}=f r^{2} {\color{red}{\frac{t^{1 + 2}}{1 + 2}}}=f r^{2} {\color{red}{\left(\frac{t^{3}}{3}\right)}}$$
因此,
$$\int{f r^{2} t^{2} d t} = \frac{f r^{2} t^{3}}{3}$$
加上積分常數:
$$\int{f r^{2} t^{2} d t} = \frac{f r^{2} t^{3}}{3}+C$$
答案
$$$\int f r^{2} t^{2}\, dt = \frac{f r^{2} t^{3}}{3} + C$$$A
Please try a new game Rotatly