$$$a f - b f$$$$$$a$$$ 的積分

此計算器會求出 $$$a f - b f$$$$$$a$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(a f - b f\right)\, da$$$

解答

逐項積分:

$${\color{red}{\int{\left(a f - b f\right)d a}}} = {\color{red}{\left(\int{a f d a} - \int{b f d a}\right)}}$$

套用常數倍法則 $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$,使用 $$$c=f$$$$$$f{\left(a \right)} = a$$$

$$- \int{b f d a} + {\color{red}{\int{a f d a}}} = - \int{b f d a} + {\color{red}{f \int{a d a}}}$$

套用冪次法則 $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$f {\color{red}{\int{a d a}}} - \int{b f d a}=f {\color{red}{\frac{a^{1 + 1}}{1 + 1}}} - \int{b f d a}=f {\color{red}{\left(\frac{a^{2}}{2}\right)}} - \int{b f d a}$$

配合 $$$c=b f$$$,應用常數法則 $$$\int c\, da = a c$$$

$$\frac{a^{2} f}{2} - {\color{red}{\int{b f d a}}} = \frac{a^{2} f}{2} - {\color{red}{a b f}}$$

因此,

$$\int{\left(a f - b f\right)d a} = \frac{a^{2} f}{2} - a b f$$

化簡:

$$\int{\left(a f - b f\right)d a} = \frac{a f \left(a - 2 b\right)}{2}$$

加上積分常數:

$$\int{\left(a f - b f\right)d a} = \frac{a f \left(a - 2 b\right)}{2}+C$$

答案

$$$\int \left(a f - b f\right)\, da = \frac{a f \left(a - 2 b\right)}{2} + C$$$A


Please try a new game Rotatly