$$$\frac{e_{1}}{t}$$$ 對 $$$t$$$ 的積分
您的輸入
求$$$\int \frac{e_{1}}{t}\, dt$$$。
解答
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=e_{1}$$$ 與 $$$f{\left(t \right)} = \frac{1}{t}$$$:
$${\color{red}{\int{\frac{e_{1}}{t} d t}}} = {\color{red}{e_{1} \int{\frac{1}{t} d t}}}$$
$$$\frac{1}{t}$$$ 的積分是 $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:
$$e_{1} {\color{red}{\int{\frac{1}{t} d t}}} = e_{1} {\color{red}{\ln{\left(\left|{t}\right| \right)}}}$$
因此,
$$\int{\frac{e_{1}}{t} d t} = e_{1} \ln{\left(\left|{t}\right| \right)}$$
加上積分常數:
$$\int{\frac{e_{1}}{t} d t} = e_{1} \ln{\left(\left|{t}\right| \right)}+C$$
答案
$$$\int \frac{e_{1}}{t}\, dt = e_{1} \ln\left(\left|{t}\right|\right) + C$$$A
Please try a new game Rotatly