$$$e - \frac{1}{x}$$$ 的積分
您的輸入
求$$$\int \left(e - \frac{1}{x}\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(e - \frac{1}{x}\right)d x}}} = {\color{red}{\left(\int{e d x} - \int{\frac{1}{x} d x}\right)}}$$
配合 $$$c=e$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$- \int{\frac{1}{x} d x} + {\color{red}{\int{e d x}}} = - \int{\frac{1}{x} d x} + {\color{red}{e x}}$$
$$$\frac{1}{x}$$$ 的積分是 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$e x - {\color{red}{\int{\frac{1}{x} d x}}} = e x - {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
因此,
$$\int{\left(e - \frac{1}{x}\right)d x} = e x - \ln{\left(\left|{x}\right| \right)}$$
加上積分常數:
$$\int{\left(e - \frac{1}{x}\right)d x} = e x - \ln{\left(\left|{x}\right| \right)}+C$$
答案
$$$\int \left(e - \frac{1}{x}\right)\, dx = \left(e x - \ln\left(\left|{x}\right|\right)\right) + C$$$A