$$$e^{\sqrt[3]{x}}$$$ 的積分
您的輸入
求$$$\int e^{\sqrt[3]{x}}\, dx$$$。
解答
令 $$$u=\sqrt[3]{x}$$$。
則 $$$du=\left(\sqrt[3]{x}\right)^{\prime }dx = \frac{1}{3 x^{\frac{2}{3}}} dx$$$ (步驟見»),並可得 $$$\frac{dx}{x^{\frac{2}{3}}} = 3 du$$$。
所以,
$${\color{red}{\int{e^{\sqrt[3]{x}} d x}}} = {\color{red}{\int{3 u^{2} e^{u} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=3$$$ 與 $$$f{\left(u \right)} = u^{2} e^{u}$$$:
$${\color{red}{\int{3 u^{2} e^{u} d u}}} = {\color{red}{\left(3 \int{u^{2} e^{u} d u}\right)}}$$
對於積分 $$$\int{u^{2} e^{u} d u}$$$,使用分部積分法 $$$\int \operatorname{\mu} \operatorname{dv} = \operatorname{\mu}\operatorname{v} - \int \operatorname{v} \operatorname{d\mu}$$$。
令 $$$\operatorname{\mu}=u^{2}$$$ 與 $$$\operatorname{dv}=e^{u} du$$$。
則 $$$\operatorname{d\mu}=\left(u^{2}\right)^{\prime }du=2 u du$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$(步驟見 »)。
所以,
$$3 {\color{red}{\int{u^{2} e^{u} d u}}}=3 {\color{red}{\left(u^{2} \cdot e^{u}-\int{e^{u} \cdot 2 u d u}\right)}}=3 {\color{red}{\left(u^{2} e^{u} - \int{2 u e^{u} d u}\right)}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$ 與 $$$f{\left(u \right)} = u e^{u}$$$:
$$3 u^{2} e^{u} - 3 {\color{red}{\int{2 u e^{u} d u}}} = 3 u^{2} e^{u} - 3 {\color{red}{\left(2 \int{u e^{u} d u}\right)}}$$
對於積分 $$$\int{u e^{u} d u}$$$,使用分部積分法 $$$\int \operatorname{\mu} \operatorname{dv} = \operatorname{\mu}\operatorname{v} - \int \operatorname{v} \operatorname{d\mu}$$$。
令 $$$\operatorname{\mu}=u$$$ 與 $$$\operatorname{dv}=e^{u} du$$$。
則 $$$\operatorname{d\mu}=\left(u\right)^{\prime }du=1 du$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$(步驟見 »)。
因此,
$$3 u^{2} e^{u} - 6 {\color{red}{\int{u e^{u} d u}}}=3 u^{2} e^{u} - 6 {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}=3 u^{2} e^{u} - 6 {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$$3 u^{2} e^{u} - 6 u e^{u} + 6 {\color{red}{\int{e^{u} d u}}} = 3 u^{2} e^{u} - 6 u e^{u} + 6 {\color{red}{e^{u}}}$$
回顧一下 $$$u=\sqrt[3]{x}$$$:
$$6 e^{{\color{red}{u}}} - 6 {\color{red}{u}} e^{{\color{red}{u}}} + 3 {\color{red}{u}}^{2} e^{{\color{red}{u}}} = 6 e^{{\color{red}{\sqrt[3]{x}}}} - 6 {\color{red}{\sqrt[3]{x}}} e^{{\color{red}{\sqrt[3]{x}}}} + 3 {\color{red}{\sqrt[3]{x}}}^{2} e^{{\color{red}{\sqrt[3]{x}}}}$$
因此,
$$\int{e^{\sqrt[3]{x}} d x} = 3 x^{\frac{2}{3}} e^{\sqrt[3]{x}} - 6 \sqrt[3]{x} e^{\sqrt[3]{x}} + 6 e^{\sqrt[3]{x}}$$
化簡:
$$\int{e^{\sqrt[3]{x}} d x} = 3 \left(x^{\frac{2}{3}} - 2 \sqrt[3]{x} + 2\right) e^{\sqrt[3]{x}}$$
加上積分常數:
$$\int{e^{\sqrt[3]{x}} d x} = 3 \left(x^{\frac{2}{3}} - 2 \sqrt[3]{x} + 2\right) e^{\sqrt[3]{x}}+C$$
答案
$$$\int e^{\sqrt[3]{x}}\, dx = 3 \left(x^{\frac{2}{3}} - 2 \sqrt[3]{x} + 2\right) e^{\sqrt[3]{x}} + C$$$A