$$$x e^{2} \sin{\left(3 x \right)}$$$ 的積分

此計算器將求出 $$$x e^{2} \sin{\left(3 x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int x e^{2} \sin{\left(3 x \right)}\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=e^{2}$$$$$$f{\left(x \right)} = x \sin{\left(3 x \right)}$$$

$${\color{red}{\int{x e^{2} \sin{\left(3 x \right)} d x}}} = {\color{red}{e^{2} \int{x \sin{\left(3 x \right)} d x}}}$$

對於積分 $$$\int{x \sin{\left(3 x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=\sin{\left(3 x \right)} dx$$$

$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{\sin{\left(3 x \right)} d x}=- \frac{\cos{\left(3 x \right)}}{3}$$$(步驟見 »)。

該積分變為

$$e^{2} {\color{red}{\int{x \sin{\left(3 x \right)} d x}}}=e^{2} {\color{red}{\left(x \cdot \left(- \frac{\cos{\left(3 x \right)}}{3}\right)-\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right) \cdot 1 d x}\right)}}=e^{2} {\color{red}{\left(- \frac{x \cos{\left(3 x \right)}}{3} - \int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- \frac{1}{3}$$$$$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$

$$e^{2} \left(- \frac{x \cos{\left(3 x \right)}}{3} - {\color{red}{\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}}}\right) = e^{2} \left(- \frac{x \cos{\left(3 x \right)}}{3} - {\color{red}{\left(- \frac{\int{\cos{\left(3 x \right)} d x}}{3}\right)}}\right)$$

$$$u=3 x$$$

$$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{3}$$$

因此,

$$e^{2} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{3}\right) = e^{2} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3}\right)$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$

$$e^{2} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3}\right) = e^{2} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{3}\right)$$

餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$e^{2} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{9}\right) = e^{2} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{{\color{red}{\sin{\left(u \right)}}}}{9}\right)$$

回顧一下 $$$u=3 x$$$

$$e^{2} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left({\color{red}{u}} \right)}}{9}\right) = e^{2} \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left({\color{red}{\left(3 x\right)}} \right)}}{9}\right)$$

因此,

$$\int{x e^{2} \sin{\left(3 x \right)} d x} = \left(- \frac{x \cos{\left(3 x \right)}}{3} + \frac{\sin{\left(3 x \right)}}{9}\right) e^{2}$$

化簡:

$$\int{x e^{2} \sin{\left(3 x \right)} d x} = \frac{\left(- 3 x \cos{\left(3 x \right)} + \sin{\left(3 x \right)}\right) e^{2}}{9}$$

加上積分常數:

$$\int{x e^{2} \sin{\left(3 x \right)} d x} = \frac{\left(- 3 x \cos{\left(3 x \right)} + \sin{\left(3 x \right)}\right) e^{2}}{9}+C$$

答案

$$$\int x e^{2} \sin{\left(3 x \right)}\, dx = \frac{\left(- 3 x \cos{\left(3 x \right)} + \sin{\left(3 x \right)}\right) e^{2}}{9} + C$$$A


Please try a new game Rotatly