$$$\frac{e}{\ln\left(x\right)}$$$ 的積分
您的輸入
求$$$\int \frac{e}{\ln\left(x\right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=e$$$ 與 $$$f{\left(x \right)} = \frac{1}{\ln{\left(x \right)}}$$$:
$${\color{red}{\int{\frac{e}{\ln{\left(x \right)}} d x}}} = {\color{red}{e \int{\frac{1}{\ln{\left(x \right)}} d x}}}$$
此積分(對數積分)不存在閉式表示:
$$e {\color{red}{\int{\frac{1}{\ln{\left(x \right)}} d x}}} = e {\color{red}{\operatorname{li}{\left(x \right)}}}$$
因此,
$$\int{\frac{e}{\ln{\left(x \right)}} d x} = e \operatorname{li}{\left(x \right)}$$
加上積分常數:
$$\int{\frac{e}{\ln{\left(x \right)}} d x} = e \operatorname{li}{\left(x \right)}+C$$
答案
$$$\int \frac{e}{\ln\left(x\right)}\, dx = e \operatorname{li}{\left(x \right)} + C$$$A
Please try a new game Rotatly