$$$e^{\sqrt{33} \sqrt{x}}$$$ 的積分
您的輸入
求$$$\int e^{\sqrt{33} \sqrt{x}}\, dx$$$。
解答
令 $$$u=\sqrt{33} \sqrt{x}$$$。
則 $$$du=\left(\sqrt{33} \sqrt{x}\right)^{\prime }dx = \frac{\sqrt{33}}{2 \sqrt{x}} dx$$$ (步驟見»),並可得 $$$\frac{dx}{\sqrt{x}} = \frac{2 \sqrt{33} du}{33}$$$。
因此,
$${\color{red}{\int{e^{\sqrt{33} \sqrt{x}} d x}}} = {\color{red}{\int{\frac{2 u e^{u}}{33} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{2}{33}$$$ 與 $$$f{\left(u \right)} = u e^{u}$$$:
$${\color{red}{\int{\frac{2 u e^{u}}{33} d u}}} = {\color{red}{\left(\frac{2 \int{u e^{u} d u}}{33}\right)}}$$
對於積分 $$$\int{u e^{u} d u}$$$,使用分部積分法 $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$。
令 $$$\operatorname{g}=u$$$ 與 $$$\operatorname{dv}=e^{u} du$$$。
則 $$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$(步驟見 »)。
因此,
$$\frac{2 {\color{red}{\int{u e^{u} d u}}}}{33}=\frac{2 {\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}}{33}=\frac{2 {\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}}{33}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{2 u e^{u}}{33} - \frac{2 {\color{red}{\int{e^{u} d u}}}}{33} = \frac{2 u e^{u}}{33} - \frac{2 {\color{red}{e^{u}}}}{33}$$
回顧一下 $$$u=\sqrt{33} \sqrt{x}$$$:
$$- \frac{2 e^{{\color{red}{u}}}}{33} + \frac{2 {\color{red}{u}} e^{{\color{red}{u}}}}{33} = - \frac{2 e^{{\color{red}{\sqrt{33} \sqrt{x}}}}}{33} + \frac{2 {\color{red}{\sqrt{33} \sqrt{x}}} e^{{\color{red}{\sqrt{33} \sqrt{x}}}}}{33}$$
因此,
$$\int{e^{\sqrt{33} \sqrt{x}} d x} = \frac{2 \sqrt{33} \sqrt{x} e^{\sqrt{33} \sqrt{x}}}{33} - \frac{2 e^{\sqrt{33} \sqrt{x}}}{33}$$
化簡:
$$\int{e^{\sqrt{33} \sqrt{x}} d x} = \frac{2 \left(\sqrt{33} \sqrt{x} - 1\right) e^{\sqrt{33} \sqrt{x}}}{33}$$
加上積分常數:
$$\int{e^{\sqrt{33} \sqrt{x}} d x} = \frac{2 \left(\sqrt{33} \sqrt{x} - 1\right) e^{\sqrt{33} \sqrt{x}}}{33}+C$$
答案
$$$\int e^{\sqrt{33} \sqrt{x}}\, dx = \frac{2 \left(\sqrt{33} \sqrt{x} - 1\right) e^{\sqrt{33} \sqrt{x}}}{33} + C$$$A