$$$e^{\frac{x}{2}}$$$ 的積分
您的輸入
求$$$\int e^{\frac{x}{2}}\, dx$$$。
解答
令 $$$u=\frac{x}{2}$$$。
則 $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (步驟見»),並可得 $$$dx = 2 du$$$。
該積分變為
$${\color{red}{\int{e^{\frac{x}{2}} d x}}} = {\color{red}{\int{2 e^{u} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$ 與 $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{2 e^{u} d u}}} = {\color{red}{\left(2 \int{e^{u} d u}\right)}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$$2 {\color{red}{\int{e^{u} d u}}} = 2 {\color{red}{e^{u}}}$$
回顧一下 $$$u=\frac{x}{2}$$$:
$$2 e^{{\color{red}{u}}} = 2 e^{{\color{red}{\left(\frac{x}{2}\right)}}}$$
因此,
$$\int{e^{\frac{x}{2}} d x} = 2 e^{\frac{x}{2}}$$
加上積分常數:
$$\int{e^{\frac{x}{2}} d x} = 2 e^{\frac{x}{2}}+C$$
答案
$$$\int e^{\frac{x}{2}}\, dx = 2 e^{\frac{x}{2}} + C$$$A