$$$\frac{z}{3}$$$ 的積分
您的輸入
求$$$\int \frac{z}{3}\, dz$$$。
解答
套用常數倍法則 $$$\int c f{\left(z \right)}\, dz = c \int f{\left(z \right)}\, dz$$$,使用 $$$c=\frac{1}{3}$$$ 與 $$$f{\left(z \right)} = z$$$:
$${\color{red}{\int{\frac{z}{3} d z}}} = {\color{red}{\left(\frac{\int{z d z}}{3}\right)}}$$
套用冪次法則 $$$\int z^{n}\, dz = \frac{z^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$:
$$\frac{{\color{red}{\int{z d z}}}}{3}=\frac{{\color{red}{\frac{z^{1 + 1}}{1 + 1}}}}{3}=\frac{{\color{red}{\left(\frac{z^{2}}{2}\right)}}}{3}$$
因此,
$$\int{\frac{z}{3} d z} = \frac{z^{2}}{6}$$
加上積分常數:
$$\int{\frac{z}{3} d z} = \frac{z^{2}}{6}+C$$
答案
$$$\int \frac{z}{3}\, dz = \frac{z^{2}}{6} + C$$$A
Please try a new game Rotatly