$$$\frac{x^{5} - 1}{x^{3}}$$$ 的積分

此計算器將求出 $$$\frac{x^{5} - 1}{x^{3}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{x^{5} - 1}{x^{3}}\, dx$$$

解答

Expand the expression:

$${\color{red}{\int{\frac{x^{5} - 1}{x^{3}} d x}}} = {\color{red}{\int{\left(x^{2} - \frac{1}{x^{3}}\right)d x}}}$$

逐項積分:

$${\color{red}{\int{\left(x^{2} - \frac{1}{x^{3}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x^{3}} d x} + \int{x^{2} d x}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$- \int{\frac{1}{x^{3}} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{\frac{1}{x^{3}} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{\frac{1}{x^{3}} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-3$$$

$$\frac{x^{3}}{3} - {\color{red}{\int{\frac{1}{x^{3}} d x}}}=\frac{x^{3}}{3} - {\color{red}{\int{x^{-3} d x}}}=\frac{x^{3}}{3} - {\color{red}{\frac{x^{-3 + 1}}{-3 + 1}}}=\frac{x^{3}}{3} - {\color{red}{\left(- \frac{x^{-2}}{2}\right)}}=\frac{x^{3}}{3} - {\color{red}{\left(- \frac{1}{2 x^{2}}\right)}}$$

因此,

$$\int{\frac{x^{5} - 1}{x^{3}} d x} = \frac{x^{3}}{3} + \frac{1}{2 x^{2}}$$

化簡:

$$\int{\frac{x^{5} - 1}{x^{3}} d x} = \frac{2 x^{5} + 3}{6 x^{2}}$$

加上積分常數:

$$\int{\frac{x^{5} - 1}{x^{3}} d x} = \frac{2 x^{5} + 3}{6 x^{2}}+C$$

答案

$$$\int \frac{x^{5} - 1}{x^{3}}\, dx = \frac{2 x^{5} + 3}{6 x^{2}} + C$$$A


Please try a new game Rotatly