$$$\frac{x - 2}{\sqrt{x - 1}}$$$ 的積分
您的輸入
求$$$\int \frac{x - 2}{\sqrt{x - 1}}\, dx$$$。
解答
將分子改寫為 $$$x - 2=\left(x - 1\right) - 1$$$,並將分式拆分:
$${\color{red}{\int{\frac{x - 2}{\sqrt{x - 1}} d x}}} = {\color{red}{\int{\left(\sqrt{x - 1} - \frac{1}{\sqrt{x - 1}}\right)d x}}}$$
逐項積分:
$${\color{red}{\int{\left(\sqrt{x - 1} - \frac{1}{\sqrt{x - 1}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{\sqrt{x - 1}} d x} + \int{\sqrt{x - 1} d x}\right)}}$$
令 $$$u=x - 1$$$。
則 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
該積分可改寫為
$$- \int{\frac{1}{\sqrt{x - 1}} d x} + {\color{red}{\int{\sqrt{x - 1} d x}}} = - \int{\frac{1}{\sqrt{x - 1}} d x} + {\color{red}{\int{\sqrt{u} d u}}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=\frac{1}{2}$$$:
$$- \int{\frac{1}{\sqrt{x - 1}} d x} + {\color{red}{\int{\sqrt{u} d u}}}=- \int{\frac{1}{\sqrt{x - 1}} d x} + {\color{red}{\int{u^{\frac{1}{2}} d u}}}=- \int{\frac{1}{\sqrt{x - 1}} d x} + {\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}=- \int{\frac{1}{\sqrt{x - 1}} d x} + {\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
回顧一下 $$$u=x - 1$$$:
$$- \int{\frac{1}{\sqrt{x - 1}} d x} + \frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = - \int{\frac{1}{\sqrt{x - 1}} d x} + \frac{2 {\color{red}{\left(x - 1\right)}}^{\frac{3}{2}}}{3}$$
令 $$$u=x - 1$$$。
則 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
因此,
$$\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\int{\frac{1}{\sqrt{x - 1}} d x}}} = \frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=- \frac{1}{2}$$$:
$$\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}=\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\int{u^{- \frac{1}{2}} d u}}}=\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}=\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - {\color{red}{\left(2 \sqrt{u}\right)}}$$
回顧一下 $$$u=x - 1$$$:
$$\frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - 2 \sqrt{{\color{red}{u}}} = \frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - 2 \sqrt{{\color{red}{\left(x - 1\right)}}}$$
因此,
$$\int{\frac{x - 2}{\sqrt{x - 1}} d x} = \frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} - 2 \sqrt{x - 1}$$
化簡:
$$\int{\frac{x - 2}{\sqrt{x - 1}} d x} = \frac{2 \left(x - 4\right) \sqrt{x - 1}}{3}$$
加上積分常數:
$$\int{\frac{x - 2}{\sqrt{x - 1}} d x} = \frac{2 \left(x - 4\right) \sqrt{x - 1}}{3}+C$$
答案
$$$\int \frac{x - 2}{\sqrt{x - 1}}\, dx = \frac{2 \left(x - 4\right) \sqrt{x - 1}}{3} + C$$$A