$$$\frac{\sin{\left(x \right)}}{34}$$$ 的積分
您的輸入
求$$$\int \frac{\sin{\left(x \right)}}{34}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{34}$$$ 與 $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{34} d x}}} = {\color{red}{\left(\frac{\int{\sin{\left(x \right)} d x}}{34}\right)}}$$
正弦函數的積分為 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(x \right)} d x}}}}{34} = \frac{{\color{red}{\left(- \cos{\left(x \right)}\right)}}}{34}$$
因此,
$$\int{\frac{\sin{\left(x \right)}}{34} d x} = - \frac{\cos{\left(x \right)}}{34}$$
加上積分常數:
$$\int{\frac{\sin{\left(x \right)}}{34} d x} = - \frac{\cos{\left(x \right)}}{34}+C$$
答案
$$$\int \frac{\sin{\left(x \right)}}{34}\, dx = - \frac{\cos{\left(x \right)}}{34} + C$$$A