$$$\frac{1}{\sec{\left(v \right)}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{\sec{\left(v \right)}}\, dv$$$。
解答
將被積函數以餘弦表示:
$${\color{red}{\int{\frac{1}{\sec{\left(v \right)}} d v}}} = {\color{red}{\int{\cos{\left(v \right)} d v}}}$$
餘弦函數的積分為 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$${\color{red}{\int{\cos{\left(v \right)} d v}}} = {\color{red}{\sin{\left(v \right)}}}$$
因此,
$$\int{\frac{1}{\sec{\left(v \right)}} d v} = \sin{\left(v \right)}$$
加上積分常數:
$$\int{\frac{1}{\sec{\left(v \right)}} d v} = \sin{\left(v \right)}+C$$
答案
$$$\int \frac{1}{\sec{\left(v \right)}}\, dv = \sin{\left(v \right)} + C$$$A
Please try a new game Rotatly