$$$\frac{\cos{\left(\theta \right)}}{1312}$$$ 的積分
您的輸入
求$$$\int \frac{\cos{\left(\theta \right)}}{1312}\, d\theta$$$。
解答
套用常數倍法則 $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$,使用 $$$c=\frac{1}{1312}$$$ 與 $$$f{\left(\theta \right)} = \cos{\left(\theta \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(\theta \right)}}{1312} d \theta}}} = {\color{red}{\left(\frac{\int{\cos{\left(\theta \right)} d \theta}}{1312}\right)}}$$
餘弦函數的積分為 $$$\int{\cos{\left(\theta \right)} d \theta} = \sin{\left(\theta \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(\theta \right)} d \theta}}}}{1312} = \frac{{\color{red}{\sin{\left(\theta \right)}}}}{1312}$$
因此,
$$\int{\frac{\cos{\left(\theta \right)}}{1312} d \theta} = \frac{\sin{\left(\theta \right)}}{1312}$$
加上積分常數:
$$\int{\frac{\cos{\left(\theta \right)}}{1312} d \theta} = \frac{\sin{\left(\theta \right)}}{1312}+C$$
答案
$$$\int \frac{\cos{\left(\theta \right)}}{1312}\, d\theta = \frac{\sin{\left(\theta \right)}}{1312} + C$$$A