$$$x^{2} \cot{\left(6 \right)} \csc{\left(4 \right)}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int x^{2} \cot{\left(6 \right)} \csc{\left(4 \right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\cot{\left(6 \right)} \csc{\left(4 \right)}$$$ 與 $$$f{\left(x \right)} = x^{2}$$$:
$${\color{red}{\int{x^{2} \cot{\left(6 \right)} \csc{\left(4 \right)} d x}}} = {\color{red}{\cot{\left(6 \right)} \csc{\left(4 \right)} \int{x^{2} d x}}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$\cot{\left(6 \right)} \csc{\left(4 \right)} {\color{red}{\int{x^{2} d x}}}=\cot{\left(6 \right)} \csc{\left(4 \right)} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\cot{\left(6 \right)} \csc{\left(4 \right)} {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
因此,
$$\int{x^{2} \cot{\left(6 \right)} \csc{\left(4 \right)} d x} = \frac{x^{3} \cot{\left(6 \right)} \csc{\left(4 \right)}}{3}$$
加上積分常數:
$$\int{x^{2} \cot{\left(6 \right)} \csc{\left(4 \right)} d x} = \frac{x^{3} \cot{\left(6 \right)} \csc{\left(4 \right)}}{3}+C$$
答案
$$$\int x^{2} \cot{\left(6 \right)} \csc{\left(4 \right)}\, dx = \frac{x^{3} \cot{\left(6 \right)} \csc{\left(4 \right)}}{3} + C$$$A