$$$\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)}$$$ 的積分

此計算器將求出 $$$\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)}\, dx$$$

解答

$$$u=\frac{x}{5}$$$

$$$du=\left(\frac{x}{5}\right)^{\prime }dx = \frac{dx}{5}$$$ (步驟見»),並可得 $$$dx = 5 du$$$

所以,

$${\color{red}{\int{\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)} d x}}} = {\color{red}{\int{5 \cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=5$$$$$$f{\left(u \right)} = \cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)}$$$

$${\color{red}{\int{5 \cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)} d u}}} = {\color{red}{\left(5 \int{\cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)} d u}\right)}}$$

提出一個餘切,並使用公式 $$$\cot^2\left( u \right)=\csc^2\left( u \right)-1$$$,將其餘部分全部以餘割表示。:

$$5 {\color{red}{\int{\cot^{3}{\left(u \right)} \csc^{3}{\left(u \right)} d u}}} = 5 {\color{red}{\int{\left(\csc^{2}{\left(u \right)} - 1\right) \cot{\left(u \right)} \csc^{3}{\left(u \right)} d u}}}$$

$$$v=\csc{\left(u \right)}$$$

$$$dv=\left(\csc{\left(u \right)}\right)^{\prime }du = - \cot{\left(u \right)} \csc{\left(u \right)} du$$$ (步驟見»),並可得 $$$\cot{\left(u \right)} \csc{\left(u \right)} du = - dv$$$

因此,

$$5 {\color{red}{\int{\left(\csc^{2}{\left(u \right)} - 1\right) \cot{\left(u \right)} \csc^{3}{\left(u \right)} d u}}} = 5 {\color{red}{\int{\left(- v^{2} \left(v^{2} - 1\right)\right)d v}}}$$

套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=-1$$$$$$f{\left(v \right)} = v^{2} \left(v^{2} - 1\right)$$$

$$5 {\color{red}{\int{\left(- v^{2} \left(v^{2} - 1\right)\right)d v}}} = 5 {\color{red}{\left(- \int{v^{2} \left(v^{2} - 1\right) d v}\right)}}$$

Expand the expression:

$$- 5 {\color{red}{\int{v^{2} \left(v^{2} - 1\right) d v}}} = - 5 {\color{red}{\int{\left(v^{4} - v^{2}\right)d v}}}$$

逐項積分:

$$- 5 {\color{red}{\int{\left(v^{4} - v^{2}\right)d v}}} = - 5 {\color{red}{\left(- \int{v^{2} d v} + \int{v^{4} d v}\right)}}$$

套用冪次法則 $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=4$$$

$$5 \int{v^{2} d v} - 5 {\color{red}{\int{v^{4} d v}}}=5 \int{v^{2} d v} - 5 {\color{red}{\frac{v^{1 + 4}}{1 + 4}}}=5 \int{v^{2} d v} - 5 {\color{red}{\left(\frac{v^{5}}{5}\right)}}$$

套用冪次法則 $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$- v^{5} + 5 {\color{red}{\int{v^{2} d v}}}=- v^{5} + 5 {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}=- v^{5} + 5 {\color{red}{\left(\frac{v^{3}}{3}\right)}}$$

回顧一下 $$$v=\csc{\left(u \right)}$$$

$$\frac{5 {\color{red}{v}}^{3}}{3} - {\color{red}{v}}^{5} = \frac{5 {\color{red}{\csc{\left(u \right)}}}^{3}}{3} - {\color{red}{\csc{\left(u \right)}}}^{5}$$

回顧一下 $$$u=\frac{x}{5}$$$

$$\frac{5 \csc^{3}{\left({\color{red}{u}} \right)}}{3} - \csc^{5}{\left({\color{red}{u}} \right)} = \frac{5 \csc^{3}{\left({\color{red}{\left(\frac{x}{5}\right)}} \right)}}{3} - \csc^{5}{\left({\color{red}{\left(\frac{x}{5}\right)}} \right)}$$

因此,

$$\int{\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)} d x} = - \csc^{5}{\left(\frac{x}{5} \right)} + \frac{5 \csc^{3}{\left(\frac{x}{5} \right)}}{3}$$

化簡:

$$\int{\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)} d x} = \left(\frac{5}{3} - \csc^{2}{\left(\frac{x}{5} \right)}\right) \csc^{3}{\left(\frac{x}{5} \right)}$$

加上積分常數:

$$\int{\cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)} d x} = \left(\frac{5}{3} - \csc^{2}{\left(\frac{x}{5} \right)}\right) \csc^{3}{\left(\frac{x}{5} \right)}+C$$

答案

$$$\int \cot^{3}{\left(\frac{x}{5} \right)} \csc^{3}{\left(\frac{x}{5} \right)}\, dx = \left(\frac{5}{3} - \csc^{2}{\left(\frac{x}{5} \right)}\right) \csc^{3}{\left(\frac{x}{5} \right)} + C$$$A


Please try a new game Rotatly