$$$\sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)}$$$ 的積分

此計算器將求出 $$$\sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)}\, dx$$$

解答

重寫被積函數:

$${\color{red}{\int{\sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\cos^{3}{\left(2 x \right)}}{\sin{\left(2 x \right)}} d x}}}$$

把分子與分母同乘以一個正弦,並將其餘全部用餘弦表示,使用公式 $$$\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1$$$,其中 $$$\alpha=2 x$$$:

$${\color{red}{\int{\frac{\cos^{3}{\left(2 x \right)}}{\sin{\left(2 x \right)}} d x}}} = {\color{red}{\int{\frac{\sin{\left(2 x \right)} \cos^{3}{\left(2 x \right)}}{1 - \cos^{2}{\left(2 x \right)}} d x}}}$$

$$$u=\cos{\left(2 x \right)}$$$

$$$du=\left(\cos{\left(2 x \right)}\right)^{\prime }dx = - 2 \sin{\left(2 x \right)} dx$$$ (步驟見»),並可得 $$$\sin{\left(2 x \right)} dx = - \frac{du}{2}$$$

所以,

$${\color{red}{\int{\frac{\sin{\left(2 x \right)} \cos^{3}{\left(2 x \right)}}{1 - \cos^{2}{\left(2 x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{u^{3}}{2 \left(1 - u^{2}\right)}\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=- \frac{1}{2}$$$$$$f{\left(u \right)} = \frac{u^{3}}{1 - u^{2}}$$$

$${\color{red}{\int{\left(- \frac{u^{3}}{2 \left(1 - u^{2}\right)}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{u^{3}}{1 - u^{2}} d u}}{2}\right)}}$$

由於分子次數不小於分母次數,進行多項式長除法(步驟見»):

$$- \frac{{\color{red}{\int{\frac{u^{3}}{1 - u^{2}} d u}}}}{2} = - \frac{{\color{red}{\int{\left(- u + \frac{u}{1 - u^{2}}\right)d u}}}}{2}$$

逐項積分:

$$- \frac{{\color{red}{\int{\left(- u + \frac{u}{1 - u^{2}}\right)d u}}}}{2} = - \frac{{\color{red}{\left(- \int{u d u} + \int{\frac{u}{1 - u^{2}} d u}\right)}}}{2}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$- \frac{\int{\frac{u}{1 - u^{2}} d u}}{2} + \frac{{\color{red}{\int{u d u}}}}{2}=- \frac{\int{\frac{u}{1 - u^{2}} d u}}{2} + \frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{2}=- \frac{\int{\frac{u}{1 - u^{2}} d u}}{2} + \frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{2}$$

$$$v=1 - u^{2}$$$

$$$dv=\left(1 - u^{2}\right)^{\prime }du = - 2 u du$$$ (步驟見»),並可得 $$$u du = - \frac{dv}{2}$$$

該積分可改寫為

$$\frac{u^{2}}{4} - \frac{{\color{red}{\int{\frac{u}{1 - u^{2}} d u}}}}{2} = \frac{u^{2}}{4} - \frac{{\color{red}{\int{\left(- \frac{1}{2 v}\right)d v}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=- \frac{1}{2}$$$$$$f{\left(v \right)} = \frac{1}{v}$$$

$$\frac{u^{2}}{4} - \frac{{\color{red}{\int{\left(- \frac{1}{2 v}\right)d v}}}}{2} = \frac{u^{2}}{4} - \frac{{\color{red}{\left(- \frac{\int{\frac{1}{v} d v}}{2}\right)}}}{2}$$

$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$

$$\frac{u^{2}}{4} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{4} = \frac{u^{2}}{4} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{4}$$

回顧一下 $$$v=1 - u^{2}$$$

$$\frac{u^{2}}{4} + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{4} = \frac{u^{2}}{4} + \frac{\ln{\left(\left|{{\color{red}{\left(1 - u^{2}\right)}}}\right| \right)}}{4}$$

回顧一下 $$$u=\cos{\left(2 x \right)}$$$

$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}^{2}}\right| \right)}}{4} + \frac{{\color{red}{u}}^{2}}{4} = \frac{\ln{\left(\left|{-1 + {\color{red}{\cos{\left(2 x \right)}}}^{2}}\right| \right)}}{4} + \frac{{\color{red}{\cos{\left(2 x \right)}}}^{2}}{4}$$

因此,

$$\int{\sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)} d x} = \frac{\ln{\left(\left|{\cos^{2}{\left(2 x \right)} - 1}\right| \right)}}{4} + \frac{\cos^{2}{\left(2 x \right)}}{4}$$

加上積分常數:

$$\int{\sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)} d x} = \frac{\ln{\left(\left|{\cos^{2}{\left(2 x \right)} - 1}\right| \right)}}{4} + \frac{\cos^{2}{\left(2 x \right)}}{4}+C$$

答案

$$$\int \sin^{2}{\left(2 x \right)} \cot^{3}{\left(2 x \right)}\, dx = \left(\frac{\ln\left(\left|{\cos^{2}{\left(2 x \right)} - 1}\right|\right)}{4} + \frac{\cos^{2}{\left(2 x \right)}}{4}\right) + C$$$A


Please try a new game Rotatly