$$$- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \left(- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=-1$$$ 與 $$$f{\left(x \right)} = \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$:
$${\color{red}{\int{\left(- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{\frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}\right)}}$$
令 $$$u=\sin{\left(x \right)}$$$。
則 $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\cos{\left(x \right)} dx = du$$$。
因此,
$$- {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = - {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$:
$$- {\color{red}{\int{\frac{1}{u^{2}} d u}}}=- {\color{red}{\int{u^{-2} d u}}}=- {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=- {\color{red}{\left(- u^{-1}\right)}}=- {\color{red}{\left(- \frac{1}{u}\right)}}$$
回顧一下 $$$u=\sin{\left(x \right)}$$$:
$${\color{red}{u}}^{-1} = {\color{red}{\sin{\left(x \right)}}}^{-1}$$
因此,
$$\int{\left(- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)d x} = \frac{1}{\sin{\left(x \right)}}$$
加上積分常數:
$$\int{\left(- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)d x} = \frac{1}{\sin{\left(x \right)}}+C$$
答案
$$$\int \left(- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)\, dx = \frac{1}{\sin{\left(x \right)}} + C$$$A