$$$\cos{\left(\frac{u}{v} \right)}$$$ 對 $$$u$$$ 的積分
您的輸入
求$$$\int \cos{\left(\frac{u}{v} \right)}\, du$$$。
解答
令 $$$w=\frac{u}{v}$$$。
則 $$$dw=\left(\frac{u}{v}\right)^{\prime }du = \frac{du}{v}$$$ (步驟見»),並可得 $$$du = v dw$$$。
該積分變為
$${\color{red}{\int{\cos{\left(\frac{u}{v} \right)} d u}}} = {\color{red}{\int{v \cos{\left(w \right)} d w}}}$$
套用常數倍法則 $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$,使用 $$$c=v$$$ 與 $$$f{\left(w \right)} = \cos{\left(w \right)}$$$:
$${\color{red}{\int{v \cos{\left(w \right)} d w}}} = {\color{red}{v \int{\cos{\left(w \right)} d w}}}$$
餘弦函數的積分為 $$$\int{\cos{\left(w \right)} d w} = \sin{\left(w \right)}$$$:
$$v {\color{red}{\int{\cos{\left(w \right)} d w}}} = v {\color{red}{\sin{\left(w \right)}}}$$
回顧一下 $$$w=\frac{u}{v}$$$:
$$v \sin{\left({\color{red}{w}} \right)} = v \sin{\left({\color{red}{\frac{u}{v}}} \right)}$$
因此,
$$\int{\cos{\left(\frac{u}{v} \right)} d u} = v \sin{\left(\frac{u}{v} \right)}$$
加上積分常數:
$$\int{\cos{\left(\frac{u}{v} \right)} d u} = v \sin{\left(\frac{u}{v} \right)}+C$$
答案
$$$\int \cos{\left(\frac{u}{v} \right)}\, du = v \sin{\left(\frac{u}{v} \right)} + C$$$A