$$$\cos{\left(\omega t^{2} \right)}$$$$$$t$$$ 的積分

此計算器會求出 $$$\cos{\left(\omega t^{2} \right)}$$$$$$t$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \cos{\left(\omega t^{2} \right)}\, dt$$$

解答

$$$u=\sqrt{\omega} t$$$

$$$du=\left(\sqrt{\omega} t\right)^{\prime }dt = \sqrt{\omega} dt$$$ (步驟見»),並可得 $$$dt = \frac{du}{\sqrt{\omega}}$$$

所以,

$${\color{red}{\int{\cos{\left(\omega t^{2} \right)} d t}}} = {\color{red}{\int{\frac{\cos{\left(u^{2} \right)}}{\sqrt{\omega}} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{\sqrt{\omega}}$$$$$$f{\left(u \right)} = \cos{\left(u^{2} \right)}$$$

$${\color{red}{\int{\frac{\cos{\left(u^{2} \right)}}{\sqrt{\omega}} d u}}} = {\color{red}{\frac{\int{\cos{\left(u^{2} \right)} d u}}{\sqrt{\omega}}}}$$

此積分(菲涅耳餘弦積分)不存在閉式表示:

$$\frac{{\color{red}{\int{\cos{\left(u^{2} \right)} d u}}}}{\sqrt{\omega}} = \frac{{\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}}{\sqrt{\omega}}$$

回顧一下 $$$u=\sqrt{\omega} t$$$

$$\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{\sqrt{\omega} t}}}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}}$$

因此,

$$\int{\cos{\left(\omega t^{2} \right)} d t} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} \sqrt{\omega} t}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}}$$

加上積分常數:

$$\int{\cos{\left(\omega t^{2} \right)} d t} = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} \sqrt{\omega} t}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}}+C$$

答案

$$$\int \cos{\left(\omega t^{2} \right)}\, dt = \frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} \sqrt{\omega} t}{\sqrt{\pi}}\right)}{2 \sqrt{\omega}} + C$$$A


Please try a new game Rotatly