$$$\cos^{2}{\left(8 x \right)}$$$ 的積分
您的輸入
求$$$\int \cos^{2}{\left(8 x \right)}\, dx$$$。
解答
令 $$$u=8 x$$$。
則 $$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{8}$$$。
所以,
$${\color{red}{\int{\cos^{2}{\left(8 x \right)} d x}}} = {\color{red}{\int{\frac{\cos^{2}{\left(u \right)}}{8} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{8}$$$ 與 $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cos^{2}{\left(u \right)}}{8} d u}}} = {\color{red}{\left(\frac{\int{\cos^{2}{\left(u \right)} d u}}{8}\right)}}$$
套用降冪公式 $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$,令 $$$\alpha= u $$$:
$$\frac{{\color{red}{\int{\cos^{2}{\left(u \right)} d u}}}}{8} = \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}}{8}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$:
$$\frac{{\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}}{8} = \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}}{8}$$
逐項積分:
$$\frac{{\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}}{16} = \frac{{\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}}{16}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$:
$$\frac{\int{\cos{\left(2 u \right)} d u}}{16} + \frac{{\color{red}{\int{1 d u}}}}{16} = \frac{\int{\cos{\left(2 u \right)} d u}}{16} + \frac{{\color{red}{u}}}{16}$$
令 $$$v=2 u$$$。
則 $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (步驟見»),並可得 $$$du = \frac{dv}{2}$$$。
因此,
$$\frac{u}{16} + \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{16} = \frac{u}{16} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{16}$$
套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$\frac{u}{16} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{16} = \frac{u}{16} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{16}$$
餘弦函數的積分為 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{u}{16} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{32} = \frac{u}{16} + \frac{{\color{red}{\sin{\left(v \right)}}}}{32}$$
回顧一下 $$$v=2 u$$$:
$$\frac{u}{16} + \frac{\sin{\left({\color{red}{v}} \right)}}{32} = \frac{u}{16} + \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{32}$$
回顧一下 $$$u=8 x$$$:
$$\frac{\sin{\left(2 {\color{red}{u}} \right)}}{32} + \frac{{\color{red}{u}}}{16} = \frac{\sin{\left(2 {\color{red}{\left(8 x\right)}} \right)}}{32} + \frac{{\color{red}{\left(8 x\right)}}}{16}$$
因此,
$$\int{\cos^{2}{\left(8 x \right)} d x} = \frac{x}{2} + \frac{\sin{\left(16 x \right)}}{32}$$
加上積分常數:
$$\int{\cos^{2}{\left(8 x \right)} d x} = \frac{x}{2} + \frac{\sin{\left(16 x \right)}}{32}+C$$
答案
$$$\int \cos^{2}{\left(8 x \right)}\, dx = \left(\frac{x}{2} + \frac{\sin{\left(16 x \right)}}{32}\right) + C$$$A